Standing Rigging (or ‘Name That Stay’)

Published by rigworks on november 19, 2019.

Question: When your riggers talk about standing rigging, they often use terms I don’t recognize. Can you break it down for me?

From the Rigger: Let’s play ‘Name that Stay’…

Continuous

Forestay (1 or HS) – The forestay, or headstay, connects the mast to the front (bow) of the boat and keeps your mast from falling aft.

  • Your forestay can be full length (masthead to deck) or fractional (1/8 to 1/4 from the top of the mast to the deck).
  • Inner forestays, including staysail stays, solent stays and baby stays, connect to the mast below the main forestay and to the deck aft of the main forestay. Inner forestays allow you to hoist small inner headsails and/or provide additional stability to your rig.

Backstay (2 or BS) – The backstay runs from the mast to the back of the boat (transom) and is often adjustable to control forestay tension and the shape of the sails.

  • A backstay can be either continuous (direct from mast to transom) or it may split in the lower section (7) with “legs” that ‘V’ out to the edges of the transom.
  • Backstays often have hydraulic or manual tensioners built into them to increase forestay tension and bend the mast, which flattens your mainsail.
  • Running backstays can be removable, adjustable, and provide additional support and tuning usually on fractional rigs. They run to the outer edges of the transom and are adjusted with each tack. The windward running back is in tension and the leeward is eased so as not to interfere with the boom and sails.
  • Checkstays, useful on fractional rigs with bendy masts, are attached well below the backstay and provide aft tension to the mid panels of the mast to reduce mast bend and provide stabilization to reduce the mast from pumping.

Shrouds – Shrouds support the mast from side to side. Shrouds are either continuous or discontinuous .

Continuous rigging, common in production sailboats, means that each shroud (except the lowers) is a continuous piece of material that connects to the mast at some point, passes through the spreaders without terminating, and continues to the deck. There may be a number of continuous shrouds on your boat ( see Figure 1 ).

  • Cap shrouds (3) , sometimes called uppers, extend from masthead to the chainplates at the deck.
  • Intermediate shrouds (4) extend from mid-mast panel to deck.
  • Lower shrouds extend from below the spreader-base to the chainplates. Fore- (5) and Aft-Lowers (6) connect to the deck either forward or aft of the cap shroud.

Discontinuous rigging, common on high performance sailboats, is a series of shorter lengths that terminate in tip cups at each spreader. The diameter of the wire/rod can be reduced in the upper sections where loads are lighter, reducing overall weight. These independent sections are referred to as V# and D# ( see Figure 2 ). For example, V1 is the lowest vertical shroud that extends from the deck to the outer tip of the first spreader. D1 is the lowest diagonal shroud that extends from the deck to the mast at the base of the first spreader. The highest section that extends from the upper spreader to the mast head may be labeled either V# or D#.

A sailboat’s standing rigging is generally built from wire rope, rod, or occasionally a super-strong synthetic fibered rope such as Dyneema ® , carbon fiber, kevlar or PBO.

  • 1×19 316 grade stainless steel Wire Rope (1 group of 19 wires, very stiff with low stretch) is standard on most sailboats. Wire rope is sized/priced by its diameter which varies from boat to boat, 3/16” through 1/2″ being the most common range.
  • 1×19 Compact Strand or Dyform wire, a more expensive alternative, is used to increase strength, reduce stretch, and minimize diameter on high performance boats such as catamarans. It is also the best alternative when replacing rod with wire.
  • Rod rigging offers lower stretch, longer life expectancy, and higher breaking strength than wire. Unlike wire rope, rod is defined by its breaking strength, usually ranging from -10 to -40 (approx. 10k to 40k breaking strength), rather than diameter. So, for example, we refer to 7/16” wire (diameter) vs. -10 Rod (breaking strength).
  • Composite Rigging is a popular option for racing boats. It offers comparable breaking strengths to wire and rod with a significant reduction in weight and often lower stretch.

Are your eyes crossing yet? This is probably enough for now, but stay tuned for our next ‘Ask the Rigger’. We will continue this discussion with some of the fittings/connections/hardware associated with your standing rigging.

Related Posts

sailboat standing rigging diagram

Ask the Rigger

Do your masthead sheaves need replacing.

Question: My halyard is binding. What’s up? From the Rigger: Most boat owners do not climb their masts regularly, but our riggers spend a lot of time up there. And they often find badly damaged Read more…

sailboat standing rigging diagram

Selecting Rope – Length, Diameter, Type

Question: Do you have guidelines for selecting halyards, sheets, etc. for my sailboat? From the Rigger:  First, if your old rope served its purpose but needs replacing, we recommend duplicating it as closely as possible Read more…

sailboat standing rigging diagram

Spinlock Deckvest Maintenance

Question: What can I do to ensure that my Spinlock Deckvest is well-maintained and ready for the upcoming season? From the Rigger: We are so glad you asked! Deckvests need to be maintained so that Read more…

sailboat standing rigging diagram

Standing Rigging on a Sailboat: Everything You Need to Know

by Emma Sullivan | Aug 14, 2023 | Sailboat Gear and Equipment

sailboat standing rigging diagram

Short answer standing rigging on a sailboat:

Standing rigging on a sailboat refers to fixed lines and cables that support the mast and help control its movement. It includes components like shrouds, stays, and forestays. These essential elements ensure stability and proper sail trim while underway.

Understanding the Importance of Standing Rigging on a Sailboat

Sailboats are marvels of engineering and ingenuity, capable of harnessing the power of the wind to transport us across vast oceans and explore far-flung destinations. As sailors, we often focus on the majestic sails, sleek hull designs, and cutting-edge navigation technology that make these vessels so awe-inspiring. However, there is one crucial component that sometimes goes unnoticed but plays a vital role in keeping our sailboats safe and seaworthy – the standing rigging.

The standing rigging refers to the network of wires and cables that support the mast and allow it to bear the tremendous loads exerted by the sails. It acts as the backbone of a sailboat’s rig , providing stability, strength, and balance. Understanding its importance is crucial for anyone who sets foot on a vessel with dreams of cruising or competing.

Firstly, let’s examine why standing rigging is essential for sailboat safety. Imagine being out at sea when suddenly your mast collapses due to faulty rigging . This nightmare scenario can easily be avoided by regularly inspecting your boat’s standing rigging for signs of wear or fatigue. Frayed wires or corroded fittings could weaken the entire structure, making it susceptible to failure under heavy winds or rough seas . By ensuring your standing rigging is in good shape through routine maintenance and inspections by professionals, you can significantly reduce this risk and ensure your own safety onboard.

Moreover, properly tensioned standing rigging is vital for maintaining optimum sailing performance. The tension in each wire within the standing rig allows for efficient transfer of power from sails to keel through mast compression. If your standing rigging is too loose or too tight, it can negatively impact your sail trim and overall boat handling capabilities. A well-tuned rig will provide better control over sail shape adjustments necessary for different wind conditions while maximizing speed potential – something every sailor strives for!

Beyond safety and performance, understanding the importance of standing rigging requires recognizing its impact on the overall balance of your sailboat. The rigging plays a crucial role in maintaining the boat’s equilibrium by counteracting the forces exerted by the sails. Without proper tension and alignment of the standing rig, a sailboat may become unbalanced, resulting in compromised stability. This imbalance can make steering more challenging, increase the risk of broaching, or even lead to capsizing in extreme cases. Therefore, paying close attention to your standing rigging ensures that your boat remains stable and enjoyable to sail.

Lastly, it is worth mentioning that investing in high-quality materials and professional rigging services will prove cost-effective in the long run . While it may be tempting to cut corners or delay necessary upgrades or maintenance, neglecting your standing rigging will only result in more significant expenses down the line. Inadequate rig tension can lead to excessive wear on other components such as sails or mast fittings, increasing their replacement frequency and cost.

In conclusion, understanding and valuing the importance of standing rigging on a sailboat is essential for sailors of all levels. It directly impacts safety at sea, enhances sailing performance, maintains balance and stability, ultimately contributing to an enjoyable experience on board. So next time you set foot on a sailboat or contemplate owning one yourself, don’t forget to give due attention to this often overlooked but vital aspect – your boat’s standing rigging!

Step-by-Step Guide: How to Inspect and Maintain Standing Rigging on a Sailboat

Title: Cracking the Code: A Step-by-Step Guide to Inspecting and Maintaining Standing Rigging on a Sailboat

Introduction: Ahoy, fellow sailors! Whether you’re an experienced seafarer or a sailing enthusiast ready to cast off, understanding how to inspect and maintain your sailboat’s standing rigging is crucial for smooth voyages on the high seas. In this detailed guide, we will unravel the mysteries of standing rigging examination and upkeep, enabling you to confidently navigate through any sailing adventure. So hoist your mainsail, secure your halyards, and let’s dive into the world of rigging maintenance !

1. Understanding Standing Rigging: Before we embark on our inspection journey, let’s clarify what exactly constitutes standing rigging. Embracing technical jargon like professionals often do, this refers to those sturdy wire cables that provide support to the mast and keep everything in place as your vessel slices through the waves. These cables are under constant stress from wind pressure and oceanic forces; therefore, routine inspections are vital.

2. Assemble Your Inspection Arsenal: Essential tools at hand? Check! Embark upon your quest equipped with binoculars (to assess hard-to-reach areas), a multimeter (for electrical testing), tape measure (we love accuracy!), a notepad (to document findings), lubricant spray can (to combat rust), and some good ol’ elbow grease.

3. Visual Inspection Bonanza: Begin by examining every component of your standing rigging thoroughly. Start from bow to stern – nothing should elude your gaze! Look out for signs of fraying wires, corrosion spots – identified by those elusive green spots -, improperly tightened connections or turnbuckles hanging loose like unfortunate pirate hooks. Pay close attention when checking shrouds and stays around their terminal points.

4. Tension Testing Zen: Employing a multimeter capable of measuring tension is vital for this next step. Like tuning an instrument, each cable must be correctly tensioned to ensure optimal performance . Begin at the base of your mast, working your way up one stay or shroud after another, carefully noting the readings. Adjust tensions as needed, using the manufacturer’s guidelines as your North Star.

5. Get Into Detailing Mode: To maintain a seaworthy craft, meticulousness is key! Start by cleaning every inch of standing rigging with fresh water and mild soap to rid it of salt crystals and other corrosive agents that Mother Nature throws our way. Once dry, inspect terminals for any hidden corrosion potential. Remember to apply lubrication around all fittings where metal meets metal – preserving their longevity on this salty adventure.

6. Diving into DIY Replacements: Sometimes, despite our best efforts, some elements may need replacement eventually. Worn-out or damaged fittings demand immediate action! While there are professionals who can lend a helping hand, attempting minor repairs yourself allows you to save time and money in the long run. Just remember safety first – secure your vessel properly before venturing aloft!

7. Periodic Inspections are Pathway to Peace: As the seasons go by and maritime miles accumulate beneath your hull’s keel, remember that rigging inspections should become regular occurrences in your life as a sailor. Incorporating these tasks into your annual maintenance routine will keep you up-to-date on the health of your standing rigging and reduce unexpected surprises during those thrilling offshore adventures.

Conclusion: With this comprehensive guide in tow, inspecting and maintaining standing rigging on a sailboat will no longer bewilder even the most landlocked soul. Armed with knowledge and armed-still-with tools-of-the-trade in hand – embark upon every voyage knowing that smooth sailing is within reach! Remember comrades: vigilance coupled with clever maintenance ensures many marvelous voyages atop Neptune’s watery kingdom!

The Key Components of Standing Rigging on a Sailboat Explained

When it comes to sailing, understanding the key components of standing rigging is crucial. This system of cables and wires plays a vital role in keeping a sailboat’s mast upright and ensuring the safety of everyone on board. So, let’s dive into these essential elements to unravel their importance and how they work together seamlessly.

1. Mast: The mast, often referred to as the backbone of a sailboat, is a tall vertical structure that supports the sails. It provides stability and acts as an attachment point for various components of the standing rigging.

2. Shrouds: Shrouds are strong steel or synthetic cables that extend from the top of the mast down to its sides, creating lateral support. Usually arranged in pairs, they help prevent excessive side-to-side movement and maintain proper alignment while under sail or at anchor .

3. Forestay: Situated at the front of the mast, directly opposite to where you stand while steering, is the forestay. This forward-facing cable keeps the mast from tipping backward due to wind pressure against the sails when sailing upwind. It ensures that your sailboat remains balanced even in gusty conditions.

4. Backstay: The backstay is another essential component that counterbalances the force exerted by the forestay on your sailboat’s mast when sailing upwind or under heavy loads. Most commonly attached at or near the highest part of your boat ‘s stern (aft end), this cable prevents undue bending or breaking caused by fore-aft pressure.

5. Tangs and Turnbuckles: These small yet mighty components connect shrouds and stays to both the hull and mast with ease and allow for easy adjustment and fine-tuning of tensioning within your standing rigging system. Tangs are fittings attached directly to masts or other structural components using bolts or screws, while turnbuckles provide threaded connections allowing for precise adjustments.

6. Spreaders: Installed horizontally on either side of the mast, spreaders play a crucial role in maintaining the integrity and proper angle of shrouds. They prevent excessive bending or twisting forces by creating a wider stance for the shrouds, ensuring even stress distribution.

7. Standing Rigging Lifelines: These lines, typically made of stainless steel wires or synthetic materials like Dyneema, serve as an additional safety measure by helping to prevent crew members from falling overboard while working on deck. Strategically placed along the sides of the sailboat, they offer stability and support during maneuvering or rough seas.

Understanding these key components is vital not only for sailboat owners but also for anyone interested in sailing . Proper maintenance and routine inspections are essential to ensure optimal performance and mitigate any risks associated with deficiencies within your standing rigging system.

So next time you set sail or find yourself gazing out at a beautifully rigged sailboat, take a moment to appreciate the intricate balance and coordination that these key components provide. It’s truly a remarkable collaboration between technology, engineering, and Mother Nature herself – allowing us to glide through the waves with grace and elegance.

Common FAQs about Standing Rigging on a Sailboats Answered

Introduction: Standing rigging is an essential component of sailboats, playing a crucial role in supporting the mast and ensuring optimal performance on the water. However, many sailors are often perplexed by various aspects of standing rigging, leading to a multitude of frequently asked questions. In this comprehensive blog post, we aim to answer some of the most common FAQs about standing rigging on sailboats, providing detailed and professional insights while adding a touch of wit and cleverness.

1. What exactly is standing rigging? Ah, standing rigging – the unsung hero of every sailboat! Standing rigging refers to all the fixed elements that support the mast in an upright position. These elements typically comprise stainless steel wires called shrouds and stays along with associated fittings like turnbuckles and tangs. Think of it as the sturdy backbone that keeps your mast from taking an inconvenient swim!

2. When should I inspect my standing rigging? Regular inspections are crucial for maintaining a safe sailing experience. We recommend inspecting your standing rigging at least once a year or before embarking on any long voyage. Additionally, keep an eye out for any signs indicating potential problems such as excessive rust, wire deformation, or frayed cables. Remember: It’s better to be safe on land than sorry at sea !

3. How do I know when it’s time to replace my standing rigging? While rigorous inspections can highlight any potential issues, there are certain indicators that suggest your standing rigging might need replacement sooner than later:

a) Age: As a general rule of thumb, consider replacing your standing rigging after 10-15 years. b) Visible damage: If you spot visible signs of wear and tear like broken strands or corroded fittings, it’s time for new gear. c) Elongation: In some cases, constant strain can cause wire elongation over time – if this exceeds manufacturer recommendations or 5%, it’s replacement time. d) Performance decline: Have you noticed reduced boat performance or excessive mast movement? Outdated rigging may be the culprit.

4. Can I inspect and replace standing rigging myself? Inspecting your own standing rigging is indeed possible if you possess adequate knowledge and experience. However, replacing it yourself requires specific expertise, so unless you’re a seasoned sailor with professional background in rigging, we highly recommend entrusting this task to certified riggers who can ensure everything is done correctly. After all, your safety should never be compromised!

5. How much does standing rigging replacement cost? Ah, the golden question! While costs can vary depending on factors like the size of your boat, the material used for new rigging (stainless steel or synthetic fibers), and labor expenses – expect to invest anywhere from a few thousand to tens of thousands of dollars for a complete standing rigging replacement. Remember that proper maintenance upfront can help extend the lifespan of your rigging and save you some precious doubloons!

6. Can I switch from stainless steel to synthetic fibers for my standing rigging? Absolutely! Synthetic fiber alternatives like Dyneema® have gained popularity due to their lighter weight, high strength-to-weight ratio, and lower corrosion risk compared to stainless steel. These materials offer enhanced performance capabilities and are a valid consideration when upgrading or replacing your standing rigging system entirely.

7. What’s the typical lifespan of synthetic fiber standing rigging? While longevity depends on various factors such as usage patterns and environmental conditions, well-maintained synthetic fiber standing rigging systems generally last around 10-12 years before requiring replacement – comparable to their stainless steel counterparts.

Conclusion: Standing rigging on sailboats may seem mysterious at first glance, but by answering these common FAQs with informative yet witty explanations, we hope to shed light on this crucial sailing component while bringing a smile to our readers’ faces. Remember, understanding and properly maintaining your standing rigging will ensure safe and enjoyable voyages for years to come. So, stay rig-ready and sail on!

Upgrading Your Standing Rigging: What You Need to Know

In the world of sailing, upgrading your standing rigging is a vital decision that can greatly impact your vessel’s performance and overall safety. The standing rigging, which includes the various wires and cables that hold the mast upright, plays an essential role in ensuring stability and proper sail control. In this blog post, we will delve into everything you need to know about this crucial aspect of sailing.

Firstly, why should you consider upgrading your standing rigging? Over time, wear and tear can take a toll on this crucial component of your boat . Exposure to harsh weather conditions, continuous strain from strong winds or heavy sails, and even galvanic corrosion can all lead to the degradation of your rigging. As a responsible sailor, it is imperative to regularly assess the condition of your standing rigging and determine when an upgrade is necessary.

When it comes to upgrading your standing rigging, there are several key factors you need to consider. One essential aspect is choosing the right materials for your new rigging. Traditionally, stainless steel has been widely used due to its durability and strength. However, recent advancements in composite materials have opened up new possibilities for sailors. High-tech fibers like carbon or aramid offer impressive strength-to-weight ratios while being less susceptible to corrosion than steel.

It is important to consult with an experienced rigger or marine engineer who can guide you in selecting the most suitable material for your specific sailing activities and vessel type. They will take into account factors such as boat size, intended use (racing or cruising), budget constraints, and local climate conditions before recommending the best material for your standing rigging upgrade.

Another crucial consideration in upgrading your standing rigging is determining whether you want to switch from wire rope-based rigging to rod-based systems or composite products. Rods are known for their superior stiffness and excellent fatigue resistance but may require specialized equipment for assembly and maintenance. Composite systems typically combine carbon fiber or fiberglass with a resin matrix, offering versatility and customization options.

Furthermore, when planning to upgrade your standing rigging, it’s essential to conduct a thorough inspection of the mast and fittings. Any signs of wear and tear, cracks, or deformations in the mast or associated hardware should not be overlooked. Reinforcing these components may be necessary before installing new rigging to ensure optimal safety and performance .

During the installation process itself, meticulous attention to detail is crucial. Proper tensioning and alignment of the rigging are vital for achieving optimal sailing performance . Consulting with professionals in the field will ensure that you avoid common pitfalls such as over-tensioning or under-tensioning your rigging, which can potentially compromise its strength and longevity.

Upgrading your standing rigging not only ensures a safer sailing experience but also presents an opportunity to enhance your vessel’s performance capabilities. By optimizing sail control and reducing overall weight aloft, you can achieve faster speeds and improved maneuverability on the water.

In conclusion, upgrading your standing rigging is an investment that should never be taken lightly. It requires careful consideration of multiple factors such as materials, boat specifications, and local conditions. Seeking expert advice throughout this process will help you make informed decisions that align with your sailing goals while ensuring maximum safety and enjoyment on the open seas . So don’t hesitate – take charge of your vessel’s integrity today by embarking on an exhilarating upgrade journey!

Troubleshooting Common Issues with Standing Rigging on a Sailboat

Title: Navigating the High Seas of Standing Rigging: Deconstructing Common Sailboat Troubles

Introduction: Setting sail on a beautiful day, wind in your hair, and salt in the air – there’s nothing quite like the freedom of sailing. But as any experienced sailor knows, with great freedom comes great responsibility; one must always be prepared to tackle common issues that can arise with standing rigging on a sailboat. In this comprehensive guide, we’ll be your navigational chart through the murky waters of troubleshooting these problems.

1. The Tale of Loose Wires: Picture this: you’re out at sea, enjoying the blissful embrace of nature when suddenly you notice an unsettling amount of slack in your boat’s rigging wires. As panic sets in, take a deep breath and remember that loose wires are not an uncommon predicament. Before jumping ship into despair, consider inspecting your turnbuckles for any signs of wear or corrosion. Often, a simple tightening or lubing can solve the issue and restore equilibrium to your rigging system.

2. Strange Groans from Your Mast: As the wind howls through your sails, does it feel like someone is playing an eerie tune on your mast? Fear not! These disconcerting noises can typically be traced back to halyards rubbing against sheaves or pulleys. Be diligent about inspecting these components and ensuring they are properly aligned and lubricated.

3. The Mystery of Shaky Connections: Imagine cruising along peacefully when you notice unsettling vibrations emanating from various connections within your standing rigging system – another nuisance faced by many sailors. Remember to check bolts and fittings for tightness and wear regularly; sometimes a mere tightening can spare you from enduring an inconvenient wobble during every voyage.

4. Elusive Corrosion Castaways: While corrosion may seem like a mythical creature lurking under layers of saltwater incantations, it sadly isn’t. The corrosive effects of the marine environment can take their toll on your rigging, leading to weakened and compromised wires. To avoid this encroaching villain, regularly inspect your rigging for signs of corrosion, paying extra attention to any dissimilar metals in contact with each other. When identified early, you can tackle this issue head-on through diligent cleaning and application of protective coatings.

5. That Perplexing Sag: No one wants a saggy rig! If you notice an unacceptable amount of slack or downward curve in your wire stays or shrouds when under load, it’s time to put on your problem-solving hat. Begin by ensuring that all turnbuckles are suitably tensioned and that the mast rake is properly adjusted. A little fine-tuning may be all it takes to regain the tautness required for smooth sailing .

6. Stay Seals Against Abrasion: Do you find your stay seals battling against wear and tear? It might be time to beef up their defenses! Insulate vulnerable areas with appropriately sized rubber tubing or durable tape like self-amalgamating tape. This extra layer of protection will help prevent damage from chafing lines or abrasive surfaces.

Conclusion: As sailboat enthusiasts know, standing rigging issues can arise unexpectedly and interrupt even the most idyllic voyages at sea. By keeping these troubleshooting considerations in mind while setting sail , you’ll have a handy compass to lead you through the challenges that come with maintaining a well-maintained rig. So next time the wind whispers trouble into your ears while adrift on your beautiful vessel, fear not – armed with knowledge and wit, you’ll conquer those common issues with ease and go back to enjoying the sublime freedom provided by sailing adventures!

Recent Posts

Essential Tips

  • Sailboat Gear and Equipment
  • Sailboat Lifestyle
  • Sailboat Maintenance
  • Sailboat Racing
  • Sailboat Tips and Tricks
  • Sailboat Types
  • Sailing Adventures
  • Sailing Destinations
  • Sailing Safety
  • Sailing Techniques
  • Types of Sailboats
  • Parts of a Sailboat
  • Cruising Boats
  • Small Sailboats
  • Design Basics
  • Sailboats under 30'
  • Sailboats 30'-35
  • Sailboats 35'-40'
  • Sailboats 40'-45'
  • Sailboats 45'-50'
  • Sailboats 50'-55'
  • Sailboats over 55'
  • Masts & Spars
  • Knots, Bends & Hitches
  • The 12v Energy Equation
  • Electronics & Instrumentation
  • Build Your Own Boat
  • Buying a Used Boat
  • Choosing Accessories
  • Living on a Boat
  • Cruising Offshore
  • Sailing in the Caribbean
  • Anchoring Skills
  • Sailing Authors & Their Writings
  • Mary's Journal
  • Nautical Terms
  • Cruising Sailboats for Sale
  • List your Boat for Sale Here!
  • Used Sailing Equipment for Sale
  • Sell Your Unwanted Gear
  • Sailing eBooks: Download them here!
  • Your Sailboats
  • Your Sailing Stories
  • Your Fishing Stories
  • Advertising
  • What's New?
  • Chartering a Sailboat

Sailboat Rigging:  Part 1 - Standing Rigging

When we talk about sailboat rigging, we mean all the wires, ropes and lines that support the rig and control the sails. To be more precise, the highly tensioned stays and shrouds that support the mast are known collectively as standing rigging , whilst the rope halyards, sheets and other control lines come under the heading of running rigging.

A Freedom 44 Cat Ketch

Some sailboats with unsupported masts, like the junk rig and catboat rigs have no standing rigging at all.

Bermudan sloops with their single mast and just one headsail will have a relatively simple rigging layout - those with a single set of spreaders especially so.

The most complex rigging of all will be found on staysail ketches and schooners with multi-spreader rigs.

A Bowman 57 staysail ketch

Fairly obviously, the mast on a sailboat is an important bit of kit.

Let's make a start by taking a look at the standing rigging that holds it up...

Standing Rigging

Cruising sailboats will have their mast supported by 1 x 19 stainless steel wire in most cases, but some racing boats may opt for stainless steel rod rigging. Why? Well rod rigging has a stretch coefficient that is some 20% less than wire, but...

  • It's more expensive than wire;
  • It's more difficult to install and adjust;
  • It suffers from metal fatigue, signs of which are difficult to spot;
  • It's less flexible and has a much shorter useful life span

So it's 1 x 19 stainless steel wire for us cruising types.

sketch showing main elements of standing rigging on sloop sailboat

Cap Shrouds

These are the parts of a sailboat's rigging that hold the mast in place athwartship. They're attached at the masthead and via chainplates to the hull.

Lower Shrouds

Further athwartship support is provided by forward and aft lower shrouds, which are connected to the mast just under the first spreader and at the other end to the hull.

The mast is supported fore and aft by stays - the forestay and backstay to be precise.

Cutter rigs require an inner forestay upon which to hang the staysail, which unlike a removable inner forestay, becomes an element of the overall rig structure.

As this stay exerts a forward component of force on the mast, it must be resisted by an equal and opposite force acting aft - either by swept-back spreaders, aft intermediates or running backstays.

Another stay that deserves a mention is the triatic backstay. This is the stay that is found on some ketches, and it's the stay from the top of the mainmast to the top of the mizzen mast.

It's a convenient alternative to a independent forestay for the mizzen. Although it makes a great antenna for an SSB radio , it does ensure that if you lose one mast, you're likely to lose the other.

Multi-Spreader Rigs

With the lower shrouds supporting the mast athwartship at the lower spreaders, intermediate shrouds do the same thing for any other sets of spreaders. These take the form of a diagonal tie between the inner end of one spreader and the outer end of the spreader below it.

Continuous or Discontinuous Sailboat Rigging

The shrouds on all single-spreader rig and some double-spreader rigs are continuous. With three or more spreaders, this arrangement becomes impractical - discontinuous rigging is the way to go. So what's that?

Well, if you consider the mast rigging as a series of panels, ie:~

  • Lower Panel ~ From the deck to the first set of spreaders;
  • Top panel ~ From top set of spreaders to the masthead;
  • Intermediate Panels ~ Between each set of spreaders.

Then discontinuous rigging is when each shroud is terminated at the top and bottom of each panel.

The main benefits of discontinuous sailboat rigging is:~

  • The rig can be more accurately set up, and
  • Weight aloft is substantially reduced;
  • It can be replaced in small doses.

Chainplates, Turnbuckles and Toggles

sailboat rigging turnbuckle, rigging screw, bottle screw and toggle

It's through these vitally important sailboat rigging components the shrouds are attached to the hull.

The chainplate is a metal plate bolted to a strongpoint in the hull, often a reinforced section of a bulkhead.

It must be aligned with angle of the shroud attached to it through a toggle, to avoid all but direct tensile loads.

Whilst cap shrouds will be vertical - or close to it - lower shrouds will be angled in both a fore-and-aft direction and athwartship.

the toggle, a vital element of the standing rigging on sailboats

Artwork by Andrew Simpson

Toggles are stainless steel fittings whose sole purpose in life is absorb any non-linear loads between the shrouds and the chainplate.

Consequently, they must be of a design that enables rotation in both the vertical and horizontal planes.

Note the split pin! These are much more secure than split rings which can gradually work their out of clevis pins - with disastrous results.

Turnbuckles, or rigging screws or bottlescrews, are stainless steel devices that enables the shroud tension to be adjusted.

Next: Part 2 - Running Rigging

Read more about Reefing and Sail Handling...

When headsail roller reefing systems jam there's usually just one reason for it. This is what it is, and here's how to prevent it from happening...

Headsail Roller Reefing Systems Can Jam If Not Set Up Correctly

When headsail roller reefing systems jam there's usually just one reason for it. This is what it is, and here's how to prevent it from happening...

Before going to the expense of installing an in-mast or in-boom mainsail roller reefing systems, you should take a look at the simple, dependable and inexpensive single line reefing system

Single Line Reefing; the Simplest Way to Pull a Slab in the Mainsail

Before going to the expense of installing an in-mast or in-boom mainsail roller reefing systems, you should take a look at the simple, dependable and inexpensive single line reefing system

Nothing beats the jiffy reefing system for simplicity and reliability. It may have lost some of its popularity due to expensive in mast and in boom reefing systems, but it still works!

Is Jiffy Reefing the simplest way to reef your boat's mainsail?

Nothing beats the jiffy reefing system for simplicity and reliability. It may have lost some of its popularity due to expensive in mast and in boom reefing systems, but it still works!

Recent Articles

RSS

Passport 42 Sailboat Specs & Key Performance Indicators

Oct 09, 24 03:58 AM

Dufour 385 Grand Large Sailboat Specs & Key Performance Indicators

Oct 07, 24 11:03 AM

Used Sailboats for Sale in the Caribbean

Oct 02, 24 03:00 AM

Here's where to:

  • Find  Used Sailboats for Sale...
  • Find Used Sailing Gear for Sale...
  • List your Sailboat for Sale...
  • List your Used Sailing Gear...

Our eBooks...

Collage of eBooks related to sailing

A few of our Most Popular Pages...

Boat anchoring technique

Copyright © 2024  Dick McClary  Sailboat-Cruising.com

Web Analytics

 

Sailboat Rig Dimensions Database

Sail area calculations

Mainsail Area = P x E / 2 Headsail Area = (Luff x LP) / 2 (LP = shortest distance between clew and Luff) Genoa Area 150% = ( 1.5 x J x I ) / 2 Genoa Area 135% = ( 1.35 x J x I ) / 2 Fore-triangle 100% = ( I x J ) / 2 Spinnaker Area = 1.8 x J x I

 
No records retreived.

S

 

Copyright � 2008 Sailboat Rig Dimensions All Rights Reserved.

  • Boating Safety
  • Company News

Experiences

  • Destinations
  • Boating Regulations
  • Sailboat Rigging Basics: A Guide to Understanding and Maintaining Your Rig

sailboat standing rigging diagram

Sailing is a thrilling experience, offering a unique blend of adventure, relaxation, and connection with nature. Central to this experience is the sailboat's rigging system, a complex network of ropes, wires, and chains that control the sails and mast. Understanding and maintaining your rig is crucial for safe and enjoyable sailing. Let's dive into the basics of sailboat rigging.

Understanding Your Sailboat's Rigging

Types of rigging.

There are several types of sailboat rigging, each with its unique characteristics and uses. Here are the most common ones:

  • Sloop Rigging: This is the most common type of rigging, featuring a single mast and two sails.
  • Cutter Rigging: Similar to sloop rigging but with an additional headsail for better performance in high winds.
  • Ketch Rigging: This type features two masts, with the mizzen mast located forward of the rudder post.
  • Yawl Rigging: Like the ketch, a yawl has two masts, but the mizzen mast is aft of the rudder post.
  • Schooner Rigging: A schooner has two or more masts, with the forward mast shorter or equal to the aft mast(s).

Components of Rigging

Regardless of the type, all sailboat rigging systems consist of several key components. Understanding these components is the first step to mastering your rig:

  • Mast: The tall vertical pole that supports the sails.
  • Boom: The horizontal pole attached to the mast, which extends the foot of the sail.
  • Standing Rigging: The fixed rigging that supports the mast, including the forestay, backstay, and shrouds.
  • Running Rigging: The movable rigging used to control the sails, including the halyards, sheets, and outhauls.
  • Blocks: Pulleys used to redirect the force applied to the running rigging.
  • Winches: Devices used to tighten or loosen the running rigging.

Maintaining Your Sailboat's Rigging

Regular inspection.

Regular inspection is the cornerstone of rigging maintenance. It helps identify potential issues before they become serious problems. Here are some key areas to focus on:

  • Mast and Boom: Check for cracks, corrosion, and loose fittings.
  • Standing Rigging: Inspect for signs of wear, such as fraying wires, bent fittings, and rust.
  • Running Rigging: Look for frayed ropes, worn blocks, and sticky winches.
  • Sails: Check for tears, loose stitching, and worn corners.

Regular Cleaning

Cleaning your rigging regularly can prevent corrosion and prolong its lifespan. Here's a simple cleaning routine:

  • Rinse with Fresh Water: After each sail, rinse your rigging with fresh water to remove salt and grime.
  • Clean with Mild Soap: Every few months, clean your rigging with a mild soap and a soft brush.
  • Lubricate Moving Parts: Apply a marine-grade lubricant to all moving parts, such as blocks and winches.

Professional Servicing

While regular inspection and cleaning can keep your rigging in good shape, it's also important to have it professionally serviced. A professional rigger can spot issues that you might miss and perform necessary repairs or replacements. Aim for a professional service at least once a year.

Learning to Sail: Practice Makes Perfect

Hands-on experience.

Understanding your rigging is one thing, but mastering it requires hands-on experience. Here are some ways to gain practical experience:

  • Sailing Courses: Enroll in a sailing course to learn the basics under the guidance of experienced instructors.
  • Practice Sailing: Spend as much time as possible on the water, practicing different sailing maneuvers and techniques.
  • Join a Sailing Club: Joining a sailing club can provide opportunities to sail regularly and learn from other sailors.

Charter a Sailboat

If you don't own a sailboat, chartering one can be a great way to practice your skills. Getmyboat offers a wide range of sailboats for charter, from small dinghies to large yachts. Always check Getmyboat first when looking to book a sailboat charter.

Understanding and maintaining your sailboat's rigging is essential for safe and enjoyable sailing. By familiarizing yourself with the different types and components of rigging, regularly inspecting and cleaning your rigging, and gaining hands-on experience, you can become a confident and competent sailor. So get out there, hoist those sails, and enjoy the ride!

Set Sail with Confidence

Now that you're equipped with the knowledge to understand and maintain your sailboat's rigging, why not put your skills to the test on the open water? With Getmyboat , you can easily find and book the perfect boat for your next sailing adventure. Whether you prefer a captained experience or want to take the helm yourself, Getmyboat offers a fleet of over 150,000 boats, including sailboats, to choose from. Make it a boat day and create unforgettable memories on the water. Book your next sailing experience with Getmyboat today!

  • How to Sail & Sailboats

Browse Trip Categories

  • About Getmyboat
  • Media Inquiries
  • Terms of Use
  • Privacy Policy
  • Cookies Policy
  • Accessibility Statement
  • Member Interface Agreement
  • How It Works
  • Mobile Apps
  • Boat Rentals
  • Jet Ski Rental
  • Fishing Charters
  • Houseboat Rental
  • Pontoon Rental
  • Yacht Rental
  • Sailboat Rental
  • Bachelorette Party Boat Rental
  • Party Boat Rentals
  • Experiences Guide

Popular Destinations

  • Lake Travis
  • Lake Lanier
  • Newport Beach
  • Lake Norman

24/7 live support

Real reviews from happy Getmyboaters.

App Store

  • New Sailboats
  • Sailboats 21-30ft
  • Sailboats 31-35ft
  • Sailboats 36-40ft
  • Sailboats Over 40ft
  • Sailboats Under 21feet
  • used_sailboats
  • Apps and Computer Programs
  • Communications
  • Fishfinders
  • Handheld Electronics
  • Plotters MFDS Rradar
  • Wind, Speed & Depth Instruments
  • Anchoring Mooring
  • Running Rigging
  • Sails Canvas
  • Standing Rigging
  • Diesel Engines
  • Off Grid Energy
  • Cleaning Waxing
  • DIY Projects
  • Repair, Tools & Materials
  • Spare Parts
  • Tools & Gadgets
  • Cabin Comfort
  • Ventilation
  • Footwear Apparel
  • Foul Weather Gear
  • Mailport & PS Advisor
  • Inside Practical Sailor Blog
  • Activate My Web Access
  • Reset Password
  • Customer Service

sailboat standing rigging diagram

  • Free Newsletter

sailboat standing rigging diagram

Tartan 37 Used Boat Review

sailboat standing rigging diagram

C&C 33 Mark II Used Boat Review

sailboat standing rigging diagram

Island Packet 350 Used Boat Review

The Beneteau 393 is a comfortable, extended coastal cruiser with a handsome interior. Photo courtesy of Yacht World.

Beneteau 393 Used Boat Review

sailboat standing rigging diagram

How to Create a Bullet-Proof VHF/SSB Backup

AquaMaps with Bob’s blue tracks and my green tracks at the start of the ICW with bridge arrival times. (Image/ Alex Jasper)

Tips From A First “Sail” on the ICW

Make sure someone is always keeping a lookout on the horizon while the tillerpilot is engaged. If there are a few crew onboard, it helps to rotate who is on watch so everyone else can relax.

Tillerpilot Tips and Safety Cautions

Irwin Vise-Grip Wire Stripper. (Photo/ Adam Morris)

Best Crimpers and Strippers for Fixing Marine Electrical Connectors

sailboat standing rigging diagram

Are Wrinkles Killing Your Sail Shape?

sailboat standing rigging diagram

Superlight Anchors: Not Just for Racers

sailboat standing rigging diagram

Refining Furling Line Fairleads

sailboat standing rigging diagram

Revive Your Mast Like a Pro

Parallel hybrid setup. Image courtesy of Ortomarine.

Diesel-Electric Hybrids Vs. Electric: Sailing’s Auxiliary Power Future

sailboat standing rigging diagram

Sailing Triteia: Budget Bluewater Cruising

sailboat standing rigging diagram

How To Keep Pipe Fittings Dry: Sealant and Teflon Tape Tests

Mid-May at Ile Perrot Yacht Club in Quebec. This time of year is when the sailing season begins in earnest. (Photo/ Marc Robic)

How Much Does it Cost to Own a Sailboat in Quebec,…

Two Sea Shield anodes installed fore and aft of the cutlass bearing. (Photo/ Marc Robic)

Anode Basics: Dos and Don’ts

sailboat standing rigging diagram

What’s The Best Bottom Paint?

Mooring line with shock absorbers and sock sleeves. Plain, white socks keep the shock absorbers from marking your hull. (Photo/ Marc Robic)

Boat Hook and Fender Hacks

Affordable products that you can find beyond the chandlery help make boat life more comfortable. Velcro strips, Bounce dryer sheets, LED pool lights and anti-skid material are all small fixes that have a big impact. (Photo/ Marc Robic)

Product Hacks: Velcro, Bounce, Anti-Skid Mats and Pool Lights

Odorlos Holding Tank Treament Packets

Stopping Holding-tank Odors

sailboat standing rigging diagram

Giving Bugs the Big Goodbye

sailboat standing rigging diagram

Galley Gadgets for the Cruising Sailor

sailboat standing rigging diagram

Cold Weather Clothes to Extend the Sailing Season

The Gill Pro Long Finger ($50) is Practical Sailor's top pick for sailing gloves.

Five Best Gloves: Sailing and DIYing in All Weather

sailboat standing rigging diagram

Sailing Gear for Kids

sailboat standing rigging diagram

What’s the Best Sunscreen?

The R. Tucker Thompson is a tall ship based in the Bay of Islands, Aotearoa New Zealand. It operates as a not-for-profit, and takes Northland’s young people on 7-day voyages. (Photo courtesy of R. Tucker Thompson)

R. Tucker Thompson Tall Ship Youth Voyage

sailboat standing rigging diagram

On Watch: This 60-Year-Old Hinckley Pilot 35 is Also a Working…

America's Cup sailboats have progressed from deep-keel monohull J-class Yachts, to regal Twelve Meters, to rambunctious wing-sailed catamarans. The rule now restricts boats to a single hull, but allows retractable, hydraulically actuated foils. Top speeds of 40 knots are common. (Photo/Shutterstock)

On Watch: America’s Cup

sailboat standing rigging diagram

On Watch: All Eyes on Europe Sail Racing

sailboat standing rigging diagram

Dear Readers

  • Sails, Rigging & Deck Gear

Standing Rigging: How Tight Is Right?

Standing rigging tension is a peculiarly under-addressed subject. Easy to see how it would worry a new boat owner or someone going to sea.

Most experts step aboard, yank or twang the shrouds and stays and mutter, Pretty slack, Too Tight, or, Thats about right.

Youll find in the sailing literature very few discussions of the question: What does tight mean?

Even riggers rarely explain how much tension they like to see.

There are a few sailors who like the rigging so tight you could send an elephant up the backstay. It can result in excessive loads and wear on fittings, chain plates and the hull. The ultimate penalty for those who can’t stand any sag in the forestay is what ocean racing sailors call a gravity storm or, less dramatically, dropping the rig.

Others like to take up the slack just enough so that the rig is at rest when the boat is motionless. This approach sometimes leaves excessive slack to leeward that can result in shock loads, excessive wear and misalignment in fittings. It may take longer, but the ultimate penalty is the same.

In between (and probably in the most logical position) are those who like to take up the slack and stretch the wire just a bit. This is frequently accomplished, at least for the stays, with an adjustable backstay. When sailing, especially on the wind, tighten down to minimize slack in the forestay. When reaching, running or at anchor, ease off.

But the question is: How much stretch…especially in the shrouds?

If you stretch the wire 5% of its breaking strength, it will be considered moderate tension. Crank in 15% of the breaking strength and it is regarded as tight. These figures apply for any diameter of wire. You need only know the wires breaking strength.

Three years ago, in the June 15, 1995 issue, we published a discussion of the views of author Richard Henderson, Skenes Elements of Yacht Design and several riggers, along with an evaluation of an excellent booklet published by Sailsystems about a Selden Mast approach (described in detail in the October 15, 1991 issue) and an entirely new method developed by Michael Dimen, who called his gadget a Rigstick.

Mentioned was the familiar (see photo) Loos rigging tension gauge, which comes in two sizes. The Model 91 ($39) is for wire 3/32″ to 5/32″. The Model 90 ($45.50) is for 3/16″ to 9/32″. The gauge depends on the bending property of aluminum plate.

The strange-looking gauges don’t willingly produce great accuracy because you have to hold one reading steady while noting another, which also requires that you make a judgment about where the centerline of the wire falls on a scale. Not easy to do.

The big name in galvanized and stainless cable (as wire is called in the trade), cable hardware and tools, Loos & Co., Inc. went looking for a better mousetrap.

Who did Gus Loos go to? The guy who designed the original gauge, his old friend, Donald J. Jordan, an 82-year-old retired Pratt & Whitney engineer who has been sailing out of Marblehead, Massachusetts, in the likes of Lightnings, Friendship sloops, Sound Schooners (which was the prized New York Yacht Club class in 1918), Pearson Wanderers and currently in a 16′ Starling Burgess design, appropriately called a Marblehead.

The old tension gauge wasnt bad, said Jordan. But it tended to get bent. Then the patent ran out and I told Gus we could do a better one.

The new version (see photo) is a distinct improvement over the old aluminum version. A better design, its also much more substantially made of aluminum, stainless and nylon.

The design problems were interesting, Jordan said. A conventional cable tension gauge has two rollers at the ends with a spring-loaded plunger in the middle and a dial gauge to measure the plunger movement. The wheels have to rotate…because they must permit some small but vital movement. That makes the tool expensive. My approach was to have two stationary wheels and a carefully contrived square slider in a arc-slot on the other.

The new Loos gauges use a long-lasting stainless spring to produce the tension. Slip the lower grooved wheels on a shroud or stay, pull the lanyard to engage the upper hook, relax, read the tension at your leisure and consult the scale to learn the pounds of pressure on the wire and the percentage of breaking strength of the wire. There are three wire gauge notches in the edge. The gauge can be left on the wire while turnbuckle adjustments are made.

The accompanying booklet, very well-done, contains a good tight discussion of the subject; some recommendations; a table on how to equalize tension in different sizes of wire, and line-drawn diagrams clearly showing rig tensions (windward and leeward) created by light, medium and heavy winds.

The wire gauge comes in three sizes, for 3/32″-5/32″, 3/16″-1/4″ and 9/32″-3/8″. West Marine sells them, respectively, for $57.99, $69.99 and $$122.99. Defender Industries cuts them to $49.95, $51.95 and $105.95. Prices in the BOAT/U.S. catalog are in between.

What if, instead of 1×19 wire, you have rod rigging? There are four new models that are bigger, heavier and, of course, more costly. They work the same, but take some arm strength. One is for .172-.250 rod, another for .281-.375. Two others models are for metric rod. West Marine sells the rod gauges for $186.99. Neither Defender nor BOAT/U.S. shows them in their catalogs.

Contact- Loos & Co., Inc., 901 Industrial Blvd., Naples, FL 34104, 800/321-5667. Rigstick, 311 Jackson, Port Townsend, WA 98368; 800/488-0855. Sailsystems, PO Box 1218, Marblehead, MA 01945; 978/745-0440.

RELATED ARTICLES MORE FROM AUTHOR

Leave a reply cancel reply.

Log in to leave a comment

Latest Videos

J Boats J/9 Sailboat Review and Boat Tour video from Practical Sailor

J Boats J/9 Sailboat Review and Boat Tour

3 Tips for a Dry Boat - DIY Boat Maintenance 101 video from Practical Sailor

3 Tips for a Dry Boat – DIY Boat Maintenance 101

Jeanneau's New Rule Breaking Sailboat - Sun Odyssey 350 Boat Review video from Practical Sailor

Jeanneau’s New Rule Breaking Sailboat – Sun Odyssey 350 Boat Review

A Fiberglass Cleaning Boat Hack You Have To Try! video from Practical Sailor

A Fiberglass Cleaning Boat Hack You Have To Try!

Latest sailboat review.

sailboat standing rigging diagram

  • Privacy Policy
  • Do Not Sell My Personal Information
  • Online Account Activation
  • Privacy Manager

Sailboat Parts Explained: Illustrated Guide (with Diagrams)

When you first get into sailing, there are a lot of sailboat parts to learn. Scouting for a good guide to all the parts, I couldn't find any, so I wrote one myself.

Below, I'll go over each different sailboat part. And I mean each and every one of them. I'll walk you through them one by one, and explain each part's function. I've also made sure to add good illustrations and clear diagrams.

This article is a great reference for beginners and experienced sailors alike. It's a great starting point, but also a great reference manual. Let's kick off with a quick general overview of the different sailboat parts.

General Overview

The different segments

You can divide up a sailboat in four general segments. These segments are arbitrary (I made them up) but it will help us to understand the parts more quickly. Some are super straightforward and some have a bit more ninja names.

Something like that. You can see the different segments highlighted in this diagram below:

Diagram of the four main parts categories of a sailboat

The hull is what most people would consider 'the boat'. It's the part that provides buoyancy and carries everything else: sails, masts, rigging, and so on. Without the hull, there would be no boat. The hull can be divided into different parts: deck, keel, cabin, waterline, bilge, bow, stern, rudder, and many more.

I'll show you those specific parts later on. First, let's move on to the mast.

sailboat standing rigging diagram

Sailboats Explained

The mast is the long, standing pole holding the sails. It is typically placed just off-center of a sailboat (a little bit to the front) and gives the sailboat its characteristic shape. The mast is crucial for any sailboat: without a mast, any sailboat would become just a regular boat.

I think this segment speaks mostly for itself. Most modern sailboats you see will have two sails up, but they can carry a variety of other specialty sails. And there are all kinds of sail plans out there, which determine the amount and shape of sails that are used.

The Rigging

This is probably the most complex category of all of them.

Rigging is the means with which the sails are attached to the mast. The rigging consists of all kinds of lines, cables, spars, and hardware. It's the segment with the most different parts.

The most important parts

If you learn anything from this article, here are the most important parts of any sailboat. You will find all of these parts in some shape or form on almost any sailboat.

Diagram of Parts of a sailboat - General overview

Okay, we now have a good starting point and a good basic understanding of the different sailboat parts. It's time for the good stuff. We're going to dive into each segment in detail.

Below, I'll go over them one by one, pointing out its different parts on a diagram, listing them with a brief explanation, and showing you examples as well.

After reading this article, you'll recognize every single sailboat part and know them by name. And if you forget one, you're free to look it up in this guide.

Diagram of the Hull Parts of a sailboat

On this page:

The hull is the heart of the boat. It's what carries everything: the mast, the sails, the rigging, the passengers. The hull is what provides the sailboat with its buoyancy, allowing it to stay afloat.

Sailboats mostly use displacement hulls, which is a shape that displaces water when moving through it. They are generally very round and use buoyancy to support its own weight. These two characteristics make sure it is a smooth ride.

There are different hull shapes that work and handle differently. If you want to learn more about them, here's the Illustrated Guide to Boat Hull Types (with 11 Examples ). But for now, all we need to know is that the hull is the rounded, floating part of any sailboat.

Instead of simply calling the different sides of a hull front, back, left and right , we use different names in sailing. Let's take a look at them.

Diagram of the Hull Parts of a sailboat

The bow is the front part of the hull. It's simply the nautical word for 'front'. It's the pointy bit that cuts through the water. The shape of the bow determines partially how the boat handles.

The stern is the back part of the hull. It's simply the nautical word for 'back'. The shape of the stern partially determines the stability and speed of the boat. With motorboats, the stern lies deep inside the water, and the hull is flatter aft. Aft also means back. This allows it to plane, increasing the hull speed. For sailboats, stability is much more important, so the hull is rounded throughout, increasing its buoyancy and hydrodynamic properties.

The transom is the backplate of the boat's hull. It's the most aft (rear) part of the boat.

Port is the left side of a sailboat.

Starboard is the right side of a sailboat

The bilges are the part where the bottom and the sides of the hull meet. On sailboats, these are typically very round, which helps with hydrodynamics. On powerboats, they tend to have an angle.

The waterline is the point where the boat's hull meets the water. Generally, boat owners paint the waterline and use antifouling paint below it, to protect it from marine growth.

The deck is the top part of the boat's hull. In a way, it's the cap of the boat, and it holds the deck hardware and rigging.

Displacement hulls are very round and smooth, which makes them very efficient and comfortable. But it also makes them very easy to capsize: think of a canoe, for example.

The keel is a large fin that offsets the tendency to capsize by providing counterbalance. Typically, the keel carries ballast in the tip, creating a counterweight to the wind's force on the sails.

The rudder is the horizontal plate at the back of the boat that is used to steer by setting a course and maintaining it. It is connected to the helm or tiller.

Tiller or Helm

  • The helm is simply the nautical term for the wheel.
  • The tiller is simply the nautical term for the steering stick.

The tiller or helm is attached to the rudder and is used to steer the boat. Most smaller sailboats (below 30') have a tiller, most larger sailboats use a helm. Large ocean-going vessels tend to have two helms.

The cockpit is the recessed part in the deck where the helmsman sits or stands. It tends to have some benches. It houses the outside navigation and systems interfaces, like the compass, chartplotter, and so on. It also houses the mainsheet traveler and winches for the jib. Most boats are set up so that the entire vessel can be operated from the cockpit (hence the name). More on those different parts later.

Most larger boats have some sort of roofed part, which is called the cabin. The cabin is used as a shelter, and on cruising sailboats you'll find the galley for cooking, a bed, bath room, and so on.

The mast is the pole on a sailboat that holds the sails. Sailboats can have one or multiple masts, depending on the mast configuration. Most sailboats have only one or two masts. Three masts or more is less common.

The boom is the horizontal pole on the mast, that holds the mainsail in place.

The sails seem simple, but actually consist of many moving parts. The parts I list below work for most modern sailboats - I mean 90% of them. However, there are all sorts of specialty sails that are not included here, to keep things concise.

Diagram of the Sail Parts of a sailboat

The mainsail is the largest sail on the largest mast. Most sailboats use a sloop rigging (just one mast with one bermuda mainsail). In that case, the main is easy to recognize. With other rig types, it gets more difficult, since there can be multiple tall masts and large sails.

If you want to take a look at the different sail plans and rig types that are out there, I suggest reading my previous guide on how to recognize any sailboat here (opens in new tab).

Sail sides:

  • Leech - Leech is the name for the back side of the sail, running from the top to the bottom.
  • Luff - Luff is the name for the front side of the sail, running from the top to the bottom.
  • Foot - Foot is the name for the lower side of the sail, where it meets the boom.

Sail corners:

  • Clew - The clew is the lower aft (back) corner of the mainsail, where the leech is connected to the foot. The clew is attached to the boom.
  • Tack - The tack is the lower front corner of the mainsail
  • Head - The head is the top corner of the mainsail

Battens are horizontal sail reinforcers that flatten and stiffen the sail.

Telltales are small strings that show you whether your sail trim is correct. You'll find telltales on both your jib and mainsail.

The jib is the standard sized headsail on a Bermuda Sloop rig (which is the sail plan most modern sailboats use).

As I mentioned: there are all kinds, types, and shapes of sails. For an overview of the most common sail types, check out my Guide on Sail Types here (with photos).

The rigging is what is used to attach your sails and mast to your boat. Rigging, in other words, mostly consists of all kinds of lines. Lines are just another word for ropes. Come to think of it, sailors really find all kinds of ways to complicate the word rope ...

Two types of rigging

There are two types of rigging: running and standing rigging. The difference between the two is very simple.

  • The running rigging is the rigging on a sailboat that's used to operate the sails. For example, the halyard, which is used to lower and heave the mainsail.
  • The standing rigging is the rigging that is used to support the mast and sail plan.

Standing Rigging

Diagram of the Standing Riggin Parts of a sailboat

Here are the different parts that belong to the standing rigging:

  • Forestay or Headstay - Line or cable that supports the mast and is attached to the bow of the boat. This is often a steel cable.
  • Backstay - Line or cable that supports the mast and is attached to the stern of the boat. This is often a steel cable.
  • Sidestay or Shroud - Line or cable that supports the mast from the sides of the boat. Most sailboats use at least two sidestays (one on each side).
  • Spreader - The sidestays are spaced to steer clear from the mast using spreaders.

Running Rigging: different words for rope

Ropes play a big part in sailing, and especially in control over the sails. In sailboat jargon, we call ropes 'lines'. But there are some lines with a specific function that have a different name. I think this makes it easier to communicate with your crew: you don't have to define which line you mean. Instead, you simply shout 'mainsheet!'. Yeah, that works.

Running rigging consists of the lines, sheets, and hardware that are used to control, raise, lower, shape and manipulate the sails on a sailboat. Rigging varies for different rig types, but since most sailboats are use a sloop rig, nearly all sailboats use the following running rigging:

Diagram of the Running Rigging Parts of a sailboat

  • Halyards -'Halyard' is simply the nautical name for lines or ropes that are used to raise and lower the mainsail. The halyard is attached to the top of the mainsail sheet, or the gaffer, which is a top spar that attaches to the mainsail. You'll find halyards on both the mainsail and jib.
  • Sheets - 'Sheet' is simply the nautical term for lines or ropes that are used to set the angle of the sail.
  • Mainsheet - The line, or sheet, that is used to set the angle of the mainsail. The mainsheet is attached to the Mainsheet traveler. More on that under hardware.
  • Jib Sheet - The jib mostly comes with two sheets: one on each side of the mast. This prevents you from having to loosen your sheet, throwing it around the other side of the mast, and tightening it. The jib sheets are often controlled using winches (more on that under hardware).
  • Cleats are small on-deck hooks that can be used to tie down sheets and lines after trimming them.
  • Reefing lines - Lines that run through the mainsail, used to put a reef in the main.
  • The Boom Topping Lift is a line that is attached to the aft (back) end of the boom and runs to the top of the mast. It supports the boom whenever you take down the mainsail.
  • The Boom Vang is a line that places downward tension on the boom.

There are some more tensioning lines, but I'll leave them for now. I could probably do an entire guide on the different sheets on a sailboat. Who knows, perhaps I'll write it.

This is a new segment, that I didn't mention before. It's a bit of an odd duck, so I threw all sorts of stuff into this category. But they are just as important as all the other parts. Your hardware consists of cleats, winches, traveler and so on. If you don't know what all of this means, no worries: neither did I. Below, you'll find a complete overview of the different parts.

Deck Hardware

Diagram of the Deck Hardware Parts of a sailboat

Just a brief mention of the different deck hardware parts:

  • Pulpits are fenced platforms on the sailboat's stern and bow, which is why they are called the bow pulpit and stern pulpit here. They typically have a solid steel framing for safety.
  • Stanchons are the standing poles supporting the lifeline , which combined for a sort of fencing around the sailboat's deck. On most sailboats, steel and steel cables are used for the stanchons and lifelines.

Mainsheet Traveler

The mainsheet traveler is a rail in the cockpit that is used to control the mainsheet. It helps to lock the mainsheet in place, fixing the mainsails angle to the wind.

sailboat standing rigging diagram

If you're interested in learning more about how to use the mainsheet traveler, Matej has written a great list of tips for using your mainsheet traveler the right way . It's a good starting point for beginners.

Winches are mechanical or electronic spools that are used to easily trim lines and sheets. Most sailboats use winches to control the jib sheets. Modern large sailing yachts use electronic winches for nearly all lines. This makes it incredibly easy to trim your lines.

sailboat standing rigging diagram

You'll find the compass typically in the cockpit. It's the most old-skool navigation tool out there, but I'm convinced it's also one of the most reliable. In any way, it definitely is the most solid backup navigator you can get for the money.

sailboat standing rigging diagram

Want to learn how to use a compass quickly and reliably? It's easy. Just read my step-by-step beginner guide on How To Use a Compass (opens in new tab .

Chartplotter

Most sailboats nowadays use, besides a compass and a map, a chartplotter. Chartplotters are GPS devices that show a map and a course. It's very similar to your normal car navigation.

sailboat standing rigging diagram

Outboard motor

Most sailboats have some sort of motor to help out when there's just the slightest breeze. These engines aren't very big or powerful, and most sailboats up to 32' use an outboard motor. You'll find these at the back of the boat.

sailboat standing rigging diagram

Most sailboats carry 1 - 3 anchors: one bow anchor (the main one) and two stern anchors. The last two are optional and are mostly used by bluewater cruisers.

sailboat standing rigging diagram

I hope this was helpful, and that you've gained a good understanding of the different parts involved in sailing. I wanted to write a good walk-through instead of overwhelming you with lists and lists of nautical terms. I hope I've succeeded. If so, I appreciate any comments and tips below.

I've tried to be as comprehensive as possible, without getting into the real nitty gritty. That would make for a gigantic article. However, if you feel I've left something out that really should be in here, please let me know in the comments below, so I can update the article.

I own a small 20 foot yacht called a Red witch made locally back in the 70s here in Western Australia i found your article great and enjoyed reading it i know it will be a great help for me in my future leaning to sail regards John.

David Gardner

İ think this is a good explanation of the difference between a ”rope” and a ”line”:

Rope is unemployed cordage. In other words, when it is in a coil and has not been assigned a job, it is just a rope.

On the other hand, when you prepare a rope for a specific task, it becomes employed and is a line. The line is labeled by the job it performs; for example, anchor line, dock line, fender line, etc.

Hey Mr. Buckles

I am taking on new crew to race with me on my Flying Scot (19ft dingy). I find your Sailboat Parts Explained to be clear and concise. I believe it will help my new crew learn the language that we use on the boat quickly without being overwhelmed.

PS: my grandparents were from Friesland and emigrated to America.

Thank you Shawn for the well written, clear and easy to digest introductory article. Just after reading this first article I feel excited and ready to set sails and go!! LOL!! Cheers! Daniel.

steve Balog

well done, chap

Great intro. However, the overview diagram misidentifies the cockpit location. The cockpit is located aft of the helm. Your diagram points to a location to the fore of the helm.

William Thompson-Ambrose

An excellent introduction to the basic anatomy and function of the sailboat. Anyone who wants to start sailing should consider the above article before stepping aboard! Thank-you

James Huskisson

Thanks for you efforts mate. We’ve all got to start somewhere. Thanks for sharing. Hoping to my first yacht. 25ft Holland. Would love to cross the Bass Strait one day to Tasmania. 👌 Cheers mate

Alan Alexander Percy

thankyou ijust aquired my first sailboat at 66yrs of age its down at pelican point a beautifull place in virginia usa my sailboat is a redwing 30 if you are ever in the area i wouldnt mind your guidance and superior knowledge of how to sail but iam sure your fantastic article will help my sailboat is wings 30 ft

Thanks for quick refresher course. Having sailed in California for 20+ years I now live in Spain where I have to take a spanish exam for a sailboat license. Problem is, it’s only in spanish. So a lot to learn for an old guy like me.

Very comprehensive, thank you

Your article really brought all the pieces together for me today. I have been adventuring my first sailing voyage for 2 months from the Carolinas and am now in Eleuthera waiting on weather to make the Exumas!!! Great job and thanks

Helen Ballard

I’ve at last found something of an adventure to have in sailing, so I’m starting at the basics, I have done a little sailing but need more despite being over 60 life in the old dog etc, thanks for your information 😊

Barbara Scott

I don’t have a sailboat, neither do l plan to literally take to the waters. But for mental exercise, l have decided to take to sailing in my Bermuda sloop, learning what it takes to become a good sailor and run a tight ship, even if it’s just imaginary. Thank you for helping me on my journey to countless adventures and misadventures, just to keep it out of the doldrums! (I’m a 69 year old African American female who have rediscovered why l enjoyed reading The Adventures of Robert Louis Stevenson as well as his captivating description of sea, wind, sailboat,and sailor).

Great article and very good information source for a beginner like me. But I didn’t find out what I had hoped to, which is, what are all those noisy bits of kit on top of the mast? I know the one with the arrow is a weather vane, but the rest? Many thanks, Jay.

Louis Cohen

The main halyard is attached to the head of the mainsail, not the to the mainsheet. In the USA, we say gaff, not gaffer. The gaff often has its own halyard separate from the main halyard.

Other than that it’s a nice article with good diagrams.

A Girl Who Has an Open Sail Dream

Wow! That was a lot of great detail! Thank you, this is going to help me a lot on my project!

Hi, good info, do u know a book that explains all the systems on a candc 27,

Leave a comment

You may also like, guide to understanding sail rig types (with pictures).

There are a lot of different sail rig types and it can be difficult to remember what's what. So I've come up with a system. Let me explain it in this article.

Cruising yacht with mainsail, headsail, and gennaker

The Ultimate Guide to Sail Types and Rigs (with Pictures)

sailboat standing rigging diagram

The Illustrated Guide To Boat Hull Types (11 Examples)

sailboat standing rigging diagram

How To Live On a Boat For Free: How I'd Do It

sailboat standing rigging diagram

How To Live on a Sailboat: Consider These 5 Things

  • BOAT OF THE YEAR
  • Newsletters
  • Sailboat Reviews
  • Boating Safety
  • Sails and Rigging
  • Maintenance
  • Sailing Totem
  • Sailor & Galley
  • Living Aboard
  • Destinations
  • Gear & Electronics
  • Charter Resources
  • Ultimate Boating Giveaway

Cruising World Logo

Understanding Running Rigging

  • By Ralph Naranjo
  • Updated: January 22, 2020

sheets, outhauls, vang control, halyards

Regardless of ­whether you sail a modern, ­fractional-rigged sloop or a wishbone-rigged staysail schooner, it’s the running rigging that sets, trims, reefs and furls the sails. In the bad old days, decks were full of wobbly, sheaved high-friction blocks and essentially one kind of cordage. Today, running rigging has attained full-system status, with its primary goal being friction abatement.

Various types of synthetic- fiber cordage, with specific strength, stretch and creep characteristics, run through ultraslippery blocks and fairleads. Each line is aimed at the exact spot a team of ergonomics experts determined it should go. Even the halyard hardware that attaches the line to the head of a sail has been ­computer-modeled and scrutinized with finite element analysis. Soft shackles and strops, made from Dyneema fiber rope, are showing up in high-load locations. In short, we are in the midst of a ­running-rigging revolution, and much of the new stuff offers real value to the cruising sailor.

What’s My Line?

Just as pistons and cylinders play a primary role in a diesel auxiliary, rope and blocks are the guts of every sail-handling system. A few decades ago, Dacron (polyester cordage) ruled the roost. It remains a key player, but stronger, lighter, and less-stretchy options are gaining ground. Racers have embraced Dyneema, Vectran, Torlon, Zylon and a growing list of other odd-sounding esoteric fibers. The old enemy stretch has been tamed, but the big remaining question is whether a running-rigging makeover is worth the expense. It takes a little cost-benefit analysis to answer that question.

There’s consensus among sailors, riggers and yacht ­designers that there are cost-effective crossover points, where performance and value intersect. Take, for example, a mainsail halyard upgrade. Polyester has proved to be too stretchy, but PBO (Zylon) cored rope, sometimes called liquid crystal, is way too costly. But for cruisers, a midrange medium-tech upgrade makes a lot of sense. The line of choice is often a double braid with a high-modulus Dyneema core and a conventional polyester cover. This midrange combo results in a halyard with much lower stretch and good handling characteristics, plus it retains a chafe- and ­ultraviolet-resistant cover.

Going higher-tech in fiber selection for sheets on a cruising boat might not be as desirable. This is because a good-quality double-braid polyester remains a sensible solution, at least on cruising boats under 40 or so feet. Its stretchy nature might even add a little shock-absorber effect, lessening the fatigue cycle on mast, boom and line. However, higher-modulus (less-stretchy) line is a superior halyard material, and it also makes sense for use in running backstays, topping lifts, tack and head pennants, and ­boom-vang tackles.

furlers

When choosing the right high-modulus line, make sure it’s rated for tight turns around small-radius blocks and masthead sheaves. In the early days of synthetic fibers, many ultra-low-stretch lines stiffened with time, making line handling more like wrapping a tree branch around a winch drum. Today, Samson, Yale, New England Ropes and others have tamed this problem, and offer a wide range of products that meet the needs of cruisers and racers. Do some research, talk with a local rigger, and pick the right rope for your boat and your specific sailing requirements.

Around the Blocks

Every ball- and roller-bearing block spins like a roulette wheel when there’s no load on the sheave. But when you add hundreds, even thousands, of pounds of tension to a halyard or sheet, it’s only the better-built blocks that hold friction at bay. Usually these blocks have well-engineered frames and bearing races that resist deformation under heavy loads.

Ironically, cruisers don’t need the highest-tech line, but we certainly do benefit from the best-built blocks. These not only run smoothly under load, but they also continue to do so despite the test of time.

Over the years, as ­ingested salt spray is baked into grit by the unrelenting sun, bearing abrasion becomes a big problem. Keep in mind that if you can see the ­high-molecular-weight Delrin, Torlon or other plastic bearings, so can the sun, and this means that UV degradation will become an issue.

It’s also important to recognize that choosing the smallest, lightest block for a given line size makes little sense. A better approach is to pick a one-size-larger block that’s still appropriate for the given line diameter. It will deliver a higher safe working load, and therefore, the normal load will be a smaller percentage of the SWL. Such blocks will also have a larger bearing surface and will operate with less friction. Add to this the fact that lower loading also equates to longer hardware life, and you have another good reason to opt for a size uptick.

Power to the Winches

I think that the hand-crank winch is one of sailing’s most elegant inventions. And the good news is this piece of hardware continues to evolve. New designs come packed with better bearings, improved self-tailers and multiple gear ratios, making them even better muscle-power multipliers.

Line clutches

Modern winches are more ergonomic, and there’s even a model that lets you trim in and ease out via opposite rotations of the winch handle. The shorthanded cruiser has more trimming tools from which to choose—even a push-button electric winch that eliminates the old question: “Where’s the winch handle?”

However, when it comes to power winching, it’s important to rethink the way you handle a sheet or halyard. With the old hand-cranking approach, arm and shoulder strength provided both torque and feedback. Unfortunately, this feedback loop is absent when using an electric winch. As the tension increases, the button doesn’t get any harder to push. Therefore, we need to look more closely at the luff and head of the sail to make sure the halyard or sheet is not being overtensioned.

In the early days of power winches, I watched the crew of a 60-foot sloop set sail with the aid of electric winches. As the mainsail was being unfurled, the furling line hung up, causing the tension on the outhaul to reach full force in the matter of a second or two. A loud bang announced the separation of the clew from the mainsail. It was an attention-grabbing demonstration of the brute force delivered by a power winch—and a costly lesson in how high-modulus, low-stretch materials endure minimal elongation prior to failure. The takeaway from this episode was that careful attention must be paid to the line being tensioned and what’s happening to the sail. Beware of dodgers and Biminis that hide the sails from view and leave the person operating a power winch without any direct visual feedback.

Clutch Plays

Some see the self-tailing winch as the ultimate answer to handling a line under load. But there are other opinions that continue to hold sway. The oldest belongs to traditionalists who swear by horn cleats, just the way Nat Herreshoff intended. It’s a functional ­approach, especially if the deck is festooned with non-self-tailing winches that remain in good working order.

But we are in a rope-clutch revolution that’s realigned deck layouts and changed the approach to line handling. These lever-operated, clamplike devices allow one winch to cope with several lines, but not all at once. With badgerlike jaws, rope clutches lock lines in place, immobilizing the line under full load. Some clutches allow a sailor to release the fully tensioned line, but lines under load behave more sedately if, prior to releasing, they are wrapped on the winch and re-tensioned prior to releasing the clutch. The line is then eased from the winch drum.

There’s a fine art to making the right rope-clutch ­commitment. The “too much of a good thing” rule once again prevails, and surrounding a winch with four or five clutched lines can cause more problems than it solves. This is especially true if two or more heavily loaded lines are involved in the same sail-­handling evolution. I’ve sailed on boats where a main halyard and mainsheet are clutched off at the same winch. The assumption is that once the sail is set, the halyard will remain locked in the clutch and the winch can be used to handle the sheet. All is copacetic up until it’s time to reef, and the mainsheet and halyard have to be handled with only one winch. Add darkness, a significant seaway and a crew just rousted from a deep sleep, and the value of an extra winch, rather than too many rope clutches, becomes very clear.

Furling systems are center stage aboard modern cruising sailboats. They make sail handling easier and safer because the majority of maneuvers can take place in the cockpit.

Headstay-mounted headsail furlers adorn almost every sailboat seen at in-water boat shows. They come in two distinct generic designs. Both types are comprised of a slotted alloy extrusion that fits over the headstay. A jib or genoa is initially hoisted via a rope halyard, then torque to wind in the sail is provided by a drum affixed to the bottom end of the foil. The difference between the two systems is that one relies on a mast-mounted sheave that leads a jib halyard to a sliding swivel that rides up and down the foil. The other system, usually found on smaller boats, has a sheave assembly affixed to the top foil section and the halyard(s) is not run to the mast. Owners with the latter system often continually fight the stretchiness of the small-diameter polyester line used for the halyard. Switching to a higher-modulus (less-stretchy) line lessens the stretch and is worth the investment.

Self-tailing winch

Both systems rely on a spooled line to deliver the furling and reefing torque. This “in-haul” line endures years of UV and chafe damage, but at some point, failure becomes inevitable. It’s more likely to occur when the sail is reefed and the inhaul line is under significant load. For some reason, such failures seem to occur on a dark, rainy night at about 0300. And when a reefing line parts, the deeply reefed jib becomes a full genoa flogging like a flag in the breeze. Even worse, the line to haul it in is no longer usable. That’s why it makes sense to check for chafe and grow skeptical of a furling line that has been exposed to sunlight for more than a decade.

Endless or continuous line furlers are designed to tame large drifter/reachers and nylon asymmetric spinnakers. There are bottom-up and top-down versions, and each is designated by where the sail first begins to furl. Bottom-up furlers are used for light air, lightweight genoa-like sails (codes and reaching sails). Instead of furling with a fishing-reel-like drum arrangement, these endless line furlers rely on a continuous loop. Line tension turns into torque at the disk-shaped drum that holds only a partial turn of line. The twin leads of the elongated loop can be led aft to the cockpit via multiple sets of double blocks ­mounted on lifeline stanchions.

Asymmetric spinnakers utilize a top-down furling rotation that is telegraphed from the drum to the head of the sail using a torsion line. The splices on these endless-loop furling lines should be regularly checked, and so should the points where the torsion rope enters the hardware.

Cordage—like the ­hardware that leads and locks running rigging in place—has been vastly improved, and it makes sense for sailors to tap into what it has to offer. This can be done in a full-scale makeover or in a bit-at-a-time tuneup. With the latter, start with halyards, add some new blocks, and check or replace the mast sheaves. If winches and clutches are part of the redo, make sure the deck structure can handle the load, or have some extra ­reinforcement added.

Whatever the scale of the rigging refit, keep in mind that on a cruising boat, saving ounces isn’t the issue. Our goal is to add efficiency and reliability, and that involves picking hardware and cordage with the right specs, and using them in a layout that keeps the rigging running as friction-free as possible.

Technical expert Ralph Naranjo is a veteran circumnavigator and ocean racer, and author of The Art of Seamanship .

  • More: hardware , How To , print 2020 winter , rigging
  • More How To

Yacht in Imperia, Italy

How to Read the Wind

through-hull fittings

After the Haulout: First Things First

Harken system

Redundancy of Thought

monohulls storage

Keys to a Successful Haulout

Flathead Lake

Northern Exposure

Pelagic 77 launch

The Pelagic 77 Amundsen is Delivered

Boat refit

The Boat Refit Edition: Next Season’s Upgrades

Allures 51.9 aluminium blue water cruiser

New Boats on Deck

  • Digital Edition
  • Customer Service
  • Privacy Policy
  • Terms of Use
  • Email Newsletters
  • Cruising World
  • Sailing World
  • Salt Water Sportsman
  • Sport Fishing
  • Wakeboarding

Standing Rigging

Main Rigging.

The most satisfactory plan of measuring off the rigging for a yacht is to make a spar plan to scale—that is, a plan showing a broadside view of the yacht with all her spars in their places, as shown by Plate I. and Fig. 1. The latter plan, Fig. 1, is necessary to obtain the correct lengths of the lower-mast shrouds and topmast backstays, as merely taking the length deck to hounds makes no allowance for the "spread" the rigging is to have. (Of course an elaborate drawing is not required, but the scale must be carefully adhered to.) A further allowance must be made for the eyes of the rigging going one oyer the other, and this allowance will be equal to twice the diameter of a shroud. For instance, the eye of the Btarboard fore shroud is put over the masthead first; then the port fore shroud, which follows, must be cut longer than the starboard rigging to the extent of twice the diameter of a shroud (twice the diameter is equal to two-thirds of the circumference, the circumference being three times the diameter). The second and third starboard shroud form a pair, and the allowance will be four times the diameter; and so on. (The forestay goes oyer all, resting on the throat or main halyard bolt.) (See page 31, Fig. 5.) For the eye and splice an allowance equal to one and a half the circumference of the masthead must be made; for the dead-eye an allowance equal to one and a half the circumference of the same. The eye to go oyer the masthead should be one and a quarter the circumference of the mast at the hounds; the eye at the other end of the shroud should be one and one-eighth the circumference of the dead-eye, so that the latter could be removed if Bplit or damaged, and replaced. The length for each shroud is measured from the top of the bolster to the dead eyes; the drift or space between the upper and lower dead-eyes, or from the channel to the top of the upper dead-eye, will be about the height of the bulwark.

There are two plans for fitting the shrouds, one known as "single eye," and the other as " pairs." In the former plan each shroud has its own eye; but when shrouds are fitted in pairs the wire goes from one dead-eye up round the masthead, and down to the next dead-eye (on the same side). A wire seizing close up to the bolster, round both shrouds, forms the eye. This is the most generally used plan, and the only objection to it is that if the eye bursts a pair of shrouds are gone; and even if one shroud burst, the strain on the remaining one might prove too much for the seizing. This, however, can be said in favour of the " pair" plan, that there are just half the number of eyes to go over the masthead,

sailboat standing rigging diagram

and consequently there is a trifle less weight aloft and a neater-looking masthead. If there are four shrouds a-side two " pairs" are fitted; if three one " pair " and one " single."

Formerly, in the case of three shrouds a-side, instead of one single eye and one " pair," two " pairs " were fitted, the aftermost shroud doing duty as a pendant; this plan has been abandoned, as the seizing so constantly burst in consequence of the great angle the pendant made with the shroud.

There are three plans in use for covering the eyes of rigging; 1. Parcelling and serving with spun yarn; 2. Covering with canvas and painting it; 3. Covering with leather.

The first plan is cheapest, but will require renewing every year; the third is the most costly, and lasts the longest; whilst the second is most used, and perhaps looks the neatest. The eyes at the lower ends of the shrouds are generally served with spun yarn; but leather looks neater, and will not turn white, as spun yarn will, by the con-|> tinual washing whilst dragging through the water; an occasional blacking or varnishing will remove the washe^rout appearance that a spun-yarn servhog might get.

The lanyards are rove in this manner: A Matthew Walker, or wall knot, is made in one end of the lanyard; the other end is rove out through the foremost hole of the upper dead eye; in through the corresponding hole of the lower dead eye; out through the centre hole of the upper dead eye, and so on, the hauling part coming in through the aftermost hole of the lower dead eye and is then set up by a luff upon luff tackle.

Fla' 6' The hauling part (o, Fig. 6) is then secured to its next standing part by a racking; it is then carried up and out through the eye of the shroud at e; round the back part of the eye at b, and in through at c; a tackle is then put on the end, d, and when set up the part d is seized to a standing part of the lanyard (see Fig. 6).

Sometimes the fall d, instead of being passed through the shroud eye at e, is secured by a couple of half-hitches round the shroud and seized as before described. Also, sometimes the fall of the lanyards is secured by a couple of simple turns and seized in the usual way round the eye of the shroud. The sheerpole passes across the eyes of the shrouds immediately over the dead eyes.

Wall knots and Matthew Walkers have, however, been known to draw, and now the general practice in racing vessels is to have a thimble eye spliced in one end of the lanyard, which eye is shackled to an eye bolt in the channel (see Fig. 6) rather ahead of the foremost chain plate; the other end of the lanyard is rove out through the foremost hole of the upper dead-eye (always commencing with the starboard fore shroud) in through the corresponding hole of the lower dead-eye, and so on; passing round the aft side of the mast, and ending with the port fore shroud: on the port side the lanyard is shackled to the channel under the after hole of the upper dead-eye. As this makes another part, extra setting up will be required, as most likely the lanyards will not render freely through the holes in the dead-eyes; sometimes three parts are set up first, then secured with a racking, and the tackles shifted to set up the remaining part^

racking is made as follows: a piece of rope, two or three feet long, is secured to one of the parts of the lanyard by a running eye at a (Fig. 7). The other end is then passed in and out as shown. The whole is then jammed up close together, and the part b properly secured.

Very great care must be taken in setting up rigging so that an equal strain is brought on all its parts.

Gutter or yawl yachts of from 5 to 15 tons usually have two shrouds a sidej those from 20 to 80 tons three shrouds a side; and thope above 80 tons four shrouds a side.

Schooners usually have three shrouds on each side of main and fore mast. Very large schooners, however, like Guinevere, Boadicea, and Elmina, have been fitted with four shrouds on each side of main and fore mast, or sixteen shrouds in all.

When wire rigging was first introduced, great objection was taken to it, on account of its rigidity; and it was declared that the stretching of the lanyards would not compensate for the stretching which was due to hemp shrouds. Various plans were suggested to supply the deficient stretching quality of wire rigging, such as spiral spring lanyards, and

r

^ e!

Continue reading here: Running Rigging

Was this article helpful?

Recommended Programs

Myboatplans 518 Boat Plans

Myboatplans 518 Boat Plans

Related Posts

  • Gaff Rig Halyard - Boat Sailing Guide
  • Google Qfu - Boat Sailing Guide
  • Selecting A Yacht - Boat Sailing Guide
  • The magazine

Current issue

  • All the issues
  • My magazines
  • Technical specifications
  • Multihull of the Year
  • Classified Ads
  • Destinations
  • Online store
  • All the magazines
  • Subscriptions
  • Accessories

Multihull of the year

Everything you need to know about standing rigging

When we are interested in a multihull, we first look at the hulls, the bridgedeck, the cabins or even the stowage capacity… And the standing rigging? It’s nevertheless what holds the mast up, isn’t it? We’re going to take a look at the mast, the boom and their peripherals!

With no heel – or almost – the forces taken by a multihull’s rig are greater than those of a monohull. It must therefore be checked regularly…

Create a notification for Technical

We will keep you posted on new articles on this subject.

Published 20/09/2018

By Vince Valstar

Published: nov. / dec. 2018

Multihulls World #162

Choose the option that suits you best!

Multihulls World #162

Issue #: 162

Published: November / December 2018

  • Price per issue - digital : 6.20€ Digital magazine
  • Price per issue - print : 8.50€ Print magazine
  • Access to Multihulls World digital archives Digital archives

The standing rigging on a multihull differs significantly from that of a monohull. Firstly, taking into account the absence of heel, it is subject to much greater forces. But finally it’s not that complicated to keep the mast upright, as the width of the platform offers well-spaced anchor points. A forestay at the front and two aft-swept lateral cap shrouds. To resist compression the profile is more often than not self-supporting and held by its own tripod rigging consisting of one or more levels of spreaders and jumpers. Other solutions with intermediate rigging exist – they can be useful for supporting a lower forestay. On cruising boats,, the mast manufacturers nowadays see to it that the profile is calculated to break when the load reaches 70 to 80% of the righting moment. In concrete terms, if you fly the windward hull 3 meters above the surface (and you’ve got to go some…) the mast is planned to give way and avoid a capsize. Most cruising multihull builders offer profiles in aluminum. But certain builders, who offer performance-oriented boats present carbon masts in their catalogues…

The most high-performance boats are even equipped with a pivoting rig. We won’t mention wing masts here, but they do exist! The fact remains that the standing rigging, as static (or not) as it is, ages: remember to check it regularly!

1 – Spreaders: better twice than once!

The immobilization of the profile is in principle better guaranteed with two (or even three) levels of spreaders and jumpers than just one. Note the two cap shrouds, well-spaced thanks to the platform’s beam.

2 – Just one level, but with lower shrouds

On the new models with rigs positioned further aft, Lagoon has offered a hybrid rig with just one level of spreaders and no jumper, but an extra pair of lowers and two cables dedicated to immobilizing the mast attached at different heights on the profile. A simpler and less expensive arrangement, validated on the smallest models, but not used on the 50. 

3 – Adjustable cap shrouds for folding arms

On a trimaran with folding arms, classic rigging with chainplates on the central hull is doubled by two adjustable lower shrouds.

4 – Half a profile bend

Most mast manufacturers recommend, on immobilized profiles, that you bend the mast by a half profile – 15 cm for a mast whose fore and aft section measures 30 cm. This bend restrains the mast and stops any tendency to move forward.

5 – The best profile with a rotating mast

Competition-oriented boats are sometimes equipped with a rotating mast. The self-supporting tube is positioned on a ball-and-socket joint. It follows the angle of the mainsail, for better aerodynamic efficiency. Certain profiles can be controlled by a system of lines via a mast spanner, fixed to the base of the mast. 

6 – Carbon on all levels!

A carbon mast weighs 40% less than an aluminum profile. Giving a saving of 70 kg for a 40-foot catamaran. As a bonus, less pitching and therefore ...

Subscribe to Multihulls World and get exclusive benefits.

Tags : 

  • B-a-BA du cata

Most-read articles in the same category

Chartering a Multihull for the Very First Time

Chartering a Multihull for the Very First Time

Bending on sails

Bending on sails

Maintenance

Maintenance

Anchoring

Everything you need to know about trampolines

What readers think.

Post a comment

No comments to show.

MW #198 - Nov / Dec 2024

sailboat standing rigging diagram

X-Jet Extreme iAQUA

Test

Subscribe now

The latest news from €3 / month

sailboat standing rigging diagram

Video of the month

Our latest YouTube hit!

sailboat standing rigging diagram

The Multihull of the Year

The 2024 results

sailboat standing rigging diagram

Classified ads

image description

Bali 4.3 Special sailing edition

image description

Moon 60 (2022) v. 5 cabins charter

image description

Privilege Serie 5 - v.4 cabins

image description

Lagoon 42 - blue water ready

Vous avez ajouté " " à vos favoris., vous avez supprimé " " de vos favoris., in order to add this article to your favorites, please sign in..

sailboat standing rigging diagram

No products in the cart.

Sailing Ellidah is supported by our readers. Buying through our links may earn us an affiliate commission at no extra cost to you.

The Running Rigging On A Sailboat Explained

The running rigging on a sailboat consists of all the lines used to hoist, lower, and control the sails and sailing equipment. These lines usually have different colors and patterns to easily identify their function and location on the vessel.

Looking at the spaghetti of lines with different colors and patterns might get your head spinning. But don’t worry, it is actually pretty simple. Each line on a sailboat has a function, and you’ll often find labels describing them in the cockpit and on the mast.

In this guide, I’ll walk you through the functions of every component of the running rigging. We’ll also look at the hardware we use to operate it and get up to speed on some of the terminology.

The difference between standing rigging and running rigging

Sometimes things can get confusing as some of our nautical terms are used for multiple items depending on the context. Let me clarify just briefly:

The  rig  or  rigging  on a sailboat is a common term for two parts, the  standing , and the  running  rigging.

  • The  standing rigging  consists of wires supporting the mast on a sailboat and reinforcing the spars from the force of the sails when sailing. Check out my guide on standing rigging here!
  • The  running rigging  consists of the halyards, sheets, and lines we use to hoist, lower, operate and control the sails on a sailboat which we will explore in this guide.

The components of the running rigging

Knowing the running rigging is an essential part of sailing, whether you are sailing a cruising boat or crewing on a large yacht. Different types of sailing vessels have different amounts of running rigging.

For example, a sloop rig has fewer lines than a ketch, which has multiple masts and requires a separate halyard, outhaul, and sheet for its mizzen sail. Similarly, a cutter rig needs another halyard and extra sheets for its additional headsail.

You can dive deeper and read more about Sloop rigs, Ketch Rigs, Cutter rigs, and many others here .

Take a look at this sailboat rigging diagram:

Lines are a type of rope with a smooth surface that works well on winches found on sailboats. They come in various styles and sizes and have different stretch capabilities.

Dyneema and other synthetic fibers have ultra-high tensile strength and low stretch. These high-performance lines last a long time, and I highly recommend them as a cruiser using them for my halyards.

A halyard is a line used to raise and lower the sail. It runs from the head of the sail to the masthead through a  block and  continues down to the deck. Running the halyard back to the cockpit is common, but many prefer to leave it on the mast.

Fun fact:  Old traditional sailboats sometimes used a stainless steel wire attached to the head of the sail instead of a line!

Jib, Genoa, and Staysail Halyards

The halyard for the headsail is run through a block in front of the masthead. If your boat has a staysail, it needs a separate halyard. These lines are primarily untouched on vessels with a furling system except when you pack the sail away or back up. Commonly referred to as the jib halyard.

Spinnaker Halyard

A spinnaker halyard is basically the same as the main halyard but used to hoist and lower the spinnaker, gennaker, or parasailor. 

The spinnaker halyard is also excellent for climbing up the front of the mast, hoisting the dinghy on deck, lifting the outboard, and many other things.

A sheet is a line you use to  control and trim a sail to the angle of the wind . The  mainsheet  controls the angle of the mainsail and is attached between the boom and the  mainsheet   traveler . The two headsail sheets are connected to the sail’s clew (lower aft corner) and run back to each side of the cockpit.

These are control lines used to adjust the angle and tension of the sail. It is also the line used to unfurl a headsail on a furling system. Depending on what sail you are referring to, this can be the  Genoa sheet , the  Jib sheet , the  Gennaker sheet , etc.

The outhaul is a line attached to the clew of the mainsail and used to adjust the foot tension. It works runs from the mainsail clew to the end of the boom and back to the mast. In many cases, back to the cockpit. On a boat with  in-mast furling , this is the line you use to pull the sail out of the mast.

Topping lift

The topping lift is a line attached to the boom’s end and runs through the masthead and down to the deck or cockpit. It lifts and holds the boom and functions well as a spare main halyard. Some types of sailboat rigging don’t use a topping lift for their boom but a boom vang instead. Others have both!

Topping lifts can also be used to lift other spars.

A downhaul is a line used to lower with and typically used to haul the mainsail down when reefing and lowering the spinnaker and whisker poles. The downhaul can also control the tack of an asymmetrical spinnaker, gennaker, or parasailor.

Tweaker and Barber Haul

A tweaker is a line, often elastic, attached to the sheet of a headsail and used to fine-tune the tension on the sheet.

Barber haul

A barber haul is a line attached to a headsail’s sheet to adjust the sheeting angle to the wind. It is often used to pull the clew further toward the center or outboard than the cars allow.

Boom Preventer

A boom preventer is a line attached to the boom’s end when sailing off the wind. Its function is to hold the spar in place and prevent it from swinging wildly.

If the boat were to get an accidental gybe, it could cause serious damage to the rigging or even harm people on board. It is important for the rigger to be cautious when setting up the boom preventer.

Running Backstay

Running backstays is similar to a normal backstay but uses a line instead of a hydraulic tensioner. Some rigs have additional check stays or runners as well.

Bonus tip: Reefing

The term reefing is used when reducing the effective sailing area exposed to the wind of a given sail. Headsails are usually reefed by partially furling them in, and they often have marks for what we refer to as 1st, 2nd, and 3rd reefs.

The mainsail is reefed similarly with an in-mast furling or in-boom furling system.

On a traditional mast, we use a system called slab reefing. The system has reefing lines running through the boom to reinforced points on the luff and leech, allowing you to pull the sail down to the boom and effectively reduce the sail area.

Having at least two reefing points in the mainsail is normal, but most cruising sailboats have 3. The 3rd is used for the heaviest conditions, giving you only a tiny bit of sail area exposed to the wind.

You want to reef your sails  before  the wind increases to a point where your boat gets overpowered.

It is essential to practice your reefing technique . You will find yourself in situations with rapidly increasing winds where you need to reduce your sails quickly.

Rule of thumb:  If you think setting a reef might be a good idea, do it.

Shaking a reef  is the term used when we sail with a reefed sail and want to increase the sail area back to full.

Hardware used for sail handling and the running rigging

Furling system.

Most sailboats have their headsail on a furling system. A furling system is a tube that runs along the forestay from the bottom furler drum to the masthead swivel.

This system allows you to roll the headsail around the forestay, making furling the sail in and out accessible. It is also convenient when reefing the sail when the wind picks up, as you can easily do this from the safety of the cockpit. These furling systems come in manual versions and electric versions.

In-mast furling

In-mast furling is a system that rolls the mainsail in and out of the mast. To unfurl the mainsail, we use the  outhaul .

In-boom furling

In-boom furling is a system that rolls the mainsail in and out of the boom. This system has been costly and has mostly been seen on big yachts earlier. They are becoming more affordable and common on smaller boats, though. To unfurl this setup, we use the main halyard.

A Stack pack is also called a Lazy Bag or Lazy Pack. It is a bag with a zip attached to the boom where the mainsail is stored when unused. It protects the mainsail from UV rays from the sun and weather elements. It is a very nice and tidy way to store the mainsail and reefing lines if you don’t have in-mast or in-boom furling.

Lazy Jacks is a system of lines running from the stack pack to the mast. The Lazy Jacks guide the mainsail up and down from the Stack Pack and prevent it from falling down on the deck. It is also possible to rig Lazy Jacks without a Stack Pack.

A block is a pulley with a sheave wheel. Blocks are used to change the direction of a pull on a line or rope and give a mechanical advantage. They have many uses, especially onboard sailboats.

A winch is a metal drum that gives you a mechanical advantage to control and tighten lines. These can be operated by turning a rope around it and pulling manually or by a winch handle to get more force. Most modern winches are self-tailing, which means they lock the line on so you can winch the line without holding on to it. Some boats even have electrical winches operated by a button.

Mainsheet Traveler

The mainsheet traveler is a horizontal track that the mainsheet is attached to through a series of blocks. The traveler enables you to adjust and lock the boom at an angle and also plays a critical part in trimming the mainsail.

Most cruising sailboats have their traveler attached to the top of the coachroof in front of the spray hood. A racing boat typically has the traveler in the cockpit near the helm to give the helmsman better control over the mainsheet.

The cars are basically a pulley or block attached to a track on the port and starboard deck that your headsail sheets run through. Cars are used to control the angle of the sheet between the clew and the deck. The cars are handy when you trim the sail to set the right balance of tension between the foot and leech, depending on your point of sail.

The jammer is used to lock a line in place. Most sailboats use these for locking the halyards, mainsheet, outhaul, reef lines, traveler lines, boom vang lines, etc. You can pull or winch a line through a closed jammer, but it won’t run away if you let go of it unless you open the lock. 

As I explained earlier, it is normal to have most or all of the lines led back to the cockpit, and they are usually run through a series of jammers.

The jammers are often labeled with the name of the line it locks, which makes it easier to remember which line goes where.

Spinnaker Pole

A spinnaker pole is a spar used to wing out a headsail when sailing off the wind, particularly the spinnaker. The spinnaker pole should have the same length as the distance between the mast and the forestay measured along the deck. We use a fore and aft guy and the pole’s topping lift to rig a pole correctly.

The rigging varies depending on the layout of the boat, but it usually looks like this:

  • One line runs from the bow to the end of the pole.
  • An aft line runs from near the stern to the end of the pole.
  • A topping lift is used to raise and lower the pole.

Whisker Pole

A whisker pole is similar to the spinnaker pole and is rigged similarly. It is typically built lighter and attached to a track on the mast. These can be found in fixed lengths or adjustable lengths. Ideally, the length should be the same as the foot of the headsail you intend to pole out.

Boom Vang/Rod Kicker

The Boom Vang has a few different names. Rod-kicker, kicking strap, or kicker. It is used to tension the boom downwards. When you are sailing downwind and have the boom far out, the mainsheet won’t pull the boom down as much as inboard, and you can then use the vang to adjust the twist and shape of the mainsail.

Mooring line

A mooring line is a traditional rope lead through a fairlead to the vessel’s cleat and a mooring buoy, key, or pontoon.

Final words

Congratulations! By now, you should have a much better understanding of how the running rig on a sailboat functions. We’ve covered the different lines, their purpose, and the hardware used to operate them. I hope you’ve enjoyed this guide and learned something new.

Now it’s time to take what you’ve learned and put it into practice by getting out on the water, setting sail, and getting hands-on experience with the lines.

Or you can continue to my following guide and learn more about the different types of sails .

Sharing is caring!

Skipper, Electrician and ROV Pilot

Robin is the founder and owner of Sailing Ellidah and has been living on his sailboat since 2019. He is currently on a journey to sail around the world and is passionate about writing his story and helpful content to inspire others who share his interest in sailing.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

IMAGES

  1. Sailboat Standing Rigging Diagram

    sailboat standing rigging diagram

  2. Sailboat Parts Explained: Illustrated Guide (with Diagrams)

    sailboat standing rigging diagram

  3. Sailboat Standing Rigging Diagram

    sailboat standing rigging diagram

  4. Sailboat Standing Rigging Diagram

    sailboat standing rigging diagram

  5. Sailboat Rigging: Part 2

    sailboat standing rigging diagram

  6. Sailboat Standing Rigging Diagram

    sailboat standing rigging diagram

VIDEO

  1. DYNEEMA [Part 1]: Replace Your Rigging

  2. How Often Should You Replace Standing Rigging? #sailing #boat #shorts

  3. Refitting Our Sailboat for Ocean Sailing

  4. Ep. 065-Onboard with the Osborns

  5. Yacht rigging: how to measure stays for reproduction

  6. ATN Topclimber at CLR Marine

COMMENTS

  1. The Standing Rigging On A Sailboat Explained

    The difference between standing rigging and running rigging. Sometimes things can get confusing as some of our nautical terms are used for multiple items depending on the context. Let me clarify just briefly: The rig or rigging on a sailboat is a common term for two parts:. The standing rigging consists of wires supporting the mast on a sailboat and reinforcing the spars from the force of the ...

  2. Rigging Explained: Standing & Running (Sailboat Parts Explained

    In part 3 of our series on sailboat parts, we dive into two types of rigging: standing rigging and running rigging. I use a 3D model and some diagrams to giv...

  3. Standing Rigging (or 'Name That Stay')

    A sailboat's standing rigging is generally built from wire rope, rod, or occasionally a super-strong synthetic fibered rope such as Dyneema ®, carbon fiber, kevlar or PBO. 1×19 316 grade stainless steel Wire Rope (1 group of 19 wires, very stiff with low stretch) is standard on most sailboats. Wire rope is sized/priced by its diameter which ...

  4. Standing Rigging on a Sailboat: Everything You Need to Know

    The standing rigging refers to the network of wires and cables that support the mast and allow it to bear the tremendous loads exerted by the sails. It acts as the backbone of a sailboat's rig, providing stability, strength, and balance. Understanding its importance is crucial for anyone who sets foot on a vessel with dreams of cruising or ...

  5. The Anatomy of Standing Rigging: A Comprehensive Diagram

    A standing rigging diagram is a visual representation of the standing rigging system of a sailboat. The standing rigging refers to the fixed, non-adjustable parts of the rigging that support the mast and ensure its stability. This diagram provides a detailed overview of the various components, measurements, and connections of the standing ...

  6. Standing rigging

    Standing rigging comprises the fixed lines, wires, or rods, which support each mast or bowsprit on a sailing vessel and reinforce those spars against wind loads transferred from the sails. This term is used in contrast to running rigging, which represents the moveable elements of rigging which adjust the position and shape of the sails.

  7. Rigging for beginners # 1. Sailboat rigging explained from standing

    PLEASE NOTE: THIS VIDEO HAS BEEN UPDATED WITH ENHANCED GRAPHICS AND IMPROVED SOUND. CHECK IT OUT HERE https://youtu.be/tRgWtPaCQQcA beginners guide to sailbo...

  8. PDF STANDING RIGGING

    The standing rigging of your boat consists of the three stays. (See Figure 1) Most sailors give little thought to your standing rigging and it costs them in two ways: speed and breakdowns. Spring is a good time to review the standing rigging and make certain that it's prepared for a summer of sailing. Let's start with the mast down and the ...

  9. Sailboat Rigging: Part 1

    Turnbuckles, or rigging screws or bottlescrews, are stainless steel devices that enables the shroud tension to be adjusted. Next: Part 2 - Running Rigging. It can all be a bit baffling at first, sailboat rigging. Cap shrouds, intermediates, aft and forward lowers, sheets, halyards, topping lifts, downhauls, outhauls, kicking straps, reefing ...

  10. Rigging for beginners # 1. Sailboat rigging explained

    A beginners guide to sailboat rigging, including standing rigging and running rigging. This animated tutorial is the first in a series and covers sails, line...

  11. Sailboat Rig Dimensions Official Website

    The term standing rigging on a sailboat refers to a series of lines, wires, and rods which are fixed in position to make the sailboat move while under sail. It specifically stands for the rigging parts that are placed under tension to keep the various spars, mast, and bowsprit, securely in position to make the sail handle wind loads ...

  12. Sailboat Rigging Basics: A Guide to Understanding and Maintaining Your Rig

    Rinse with Fresh Water: After each sail, rinse your rigging with fresh water to remove salt and grime. Clean with Mild Soap: Every few months, clean your rigging with a mild soap and a soft brush. Lubricate Moving Parts: Apply a marine-grade lubricant to all moving parts, such as blocks and winches.

  13. Standing Rigging: How Tight Is Right?

    Standing rigging tension is a peculiarly under-addressed subject. Easy to see how it would worry a new boat owner or someone going to sea. Most experts step aboard, yank or twang the shrouds and stays and mutter, Pretty slack, Too Tight, or, Thats about right. Youll find in the sailing literature very few discussions of the question: What does ...

  14. Sailboat Parts Explained: Illustrated Guide (with Diagrams)

    Here are the different parts that belong to the standing rigging: Forestay or Headstay - Line or cable that supports the mast and is attached to the bow of the boat. This is often a steel cable. Backstay - Line or cable that supports the mast and is attached to the stern of the boat. This is often a steel cable.

  15. The Ultimate Guide to Understanding Sailing Ship Rigging: Diagrams and

    The standing rigging of a sailing ship refers to the collection of cables, wires, and ropes that support the mast and help maintain the shape and stability of the rig. It is an essential component of the sailboat's structure, providing the necessary strength to withstand the forces exerted by the wind and waves.

  16. Inspecting, Maintaining and Replacing Standing Rigging

    Aug 14, 2015. It's one of the most important features on a sailboat, but many owners put standing rigging at the back of their minds when it comes time to do their pre-season safety checks. A prudent sailor should inspect his or her standing rig at least once each season and should know when the time comes to replace most or all of it.

  17. Standing rigging: step by step guide on how to tune it on your sailboat

    The lazy rigger screws the turnbuckle on deck a few turns so that he has only to hook the vertical shroud, the V1. Standing rigging - measuring the tensiones. So, in order to avoid any dangers, we set the inner forestay (to double up with the forestay). We also set runners and checkstays just for safety.

  18. Understanding Running Rigging

    Standing rigging keeps the mast in place, but it's the running rigging that handles all the action aboard a boat under sail. The many components in a modern running rigging ­system—sheets, outhauls, vang control, halyards—work in conjunction with wide range of blocks to keep friction to a minimum. Ralph Naranjo.

  19. Standing Rigging

    There are three plans in use for covering the eyes of rigging; 1. Parcelling and serving with spun yarn; 2. Covering with canvas and painting it; 3. Covering with leather. The first plan is cheapest, but will require renewing every year; the third is the most costly, and lasts the longest; whilst the second is most used, and perhaps looks the ...

  20. Know-how: Modern Rigs 101

    Standing rigging is the collective term for the system of wires (or rods) that supports the mast, both fore-and-aft and laterally. Lateral stays are known as shrouds and each has its own name (see diagram). The "shroud angle" is the angle between the mast and the cap shroud, typically never less than 12 degrees.

  21. How to Measure Standing Rigging

    If you would like to measure your rigging yourself proceed to step 5. Find a flat surface large enough that you can fully stretch your rigging out for measurement. Lay out the wire and attach one end of your wire segment to a secure fixed point. You can use a large nail or screw on the dock. "Stretch" the wire straight and ensure there are ...

  22. Everything you need to know about standing rigging

    The standing rigging on a multihull differs significantly from that of a monohull. Firstly, taking into account the absence of heel, it is subject to much greater forces. ... Bali 4.3 Special sailing edition Location : Mali Losinj, Croatia Year : 2019 520 000, 00 Ex. tax€ Excess 14 Location : Lorient, France Year : 2024 640 000, 00 Ex. tax€

  23. The Running Rigging On A Sailboat Explained

    The standing rigging consists of wires supporting the mast on a sailboat and reinforcing the spars from the force of the sails when sailing. ... Sailboat rigging diagram Lines. Lines are a type of rope with a smooth surface that works well on winches found on sailboats. They come in various styles and sizes and have different stretch capabilities.